Quan sát Hình 6. Nêu quy luật sắp xếp các chấm đỏ

Lời giải Bài 9 trang 30 sách Chuyên đề Toán lớp 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập.

1 394 10/11/2022


Giải Chuyên đề Toán 10 Cánh diều Bài 1: Phương pháp quy nạp toán học

Bài 9 trang 30 Chuyên đề Toán 10:

Quan sát Hình 6.

Chuyên đề Toán 10 Bài 1: Phương pháp quy nạp toán học - Cánh diều (ảnh 1)

a) Nêu quy luật sắp xếp các chấm đỏ và vàng xen kẽ nhau khi xếp các chấm đó từ góc trên bên trái xuống góc dưới bên phải (tạo thành hinh vuông).

b) Giả sử hình vuông thứ n có mỗi cạnh chứa n chấm. Tinh tổng số chấm được xếp trong hình vuông (kể cả trên cạnh). Chứng minh kết quả đó bằng phương pháp quy nạp toán học.

Lời giải:

a) Số chấm tăng thêm sau mỗi lượt xếp (kể từ lượt đầu tiên) là các số lẻ liên tiếp bắt đầu từ 1.

b) Vì ở hình vuông thứ n có mỗi cạnh chứa n chấm nên tổng số chấm là n2.

Mặt khác, theo cách sắp xếp trên ta lại có tổng số chấm là: 1 + 3 + 5 + ... + (2n – 1).

Như vậy ta sẽ chứng minh mệnh đề

P(n): "1 + 3 + 5 + ... + (2n – 1) = n2 với mọi n  *".

+) Khi n = 1, ta có: 1 = 12.

Vậy mệnh đề đúng với n = 1.

+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1] = (k + 1)2.

Thật vậy, theo giả thiết quy nạp ta có: 1 + 3 + 5 + ... + (2k – 1) = k2.

Khi đó:

1 + 3 + 5 + ... + (2k – 1) + [2(k+1) – 1]

= [1 + 3 + 5 + ... + (2k – 1)] + [2(k+1) – 1]

= k2 + [2(k+1) – 1]

= k2 + (2k + 2 –1)

= k2 + 2k + 1

= (k + 1)2.

Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n  *.

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:

Hoạt động trang 23 Chuyên đề Toán 10: Xét mệnh đề chứa biến P(n) : "1 + 3 + 5 + ... + (2n – 1) = n2" với n là số nguyên dương...

Luyện tập 1 trang 25 Chuyên đề Toán 10: Chứng minh rằng với mọi n  * ta có: Luyện tập 1 trang 25 Chuyên đề Toán 10...

Luyện tập 2 trang 26 Chuyên đề Toán 10: Chứng minh với mọi n  *,(1+2)n, (1-2)n lần lượt viết được ở dạng...

Luyện tập 3 trang 26 Chuyên đề Toán 10: Chứng minh 16n15n1 chia hết cho 225 với mọi n  *...

Bài 1 trang 29 Chuyên đề Toán 10: Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n  *...

Bài 2 trang 29 Chuyên đề Toán 10: Cho Sn=1+12+122++12n...

Bài 3 trang 29 Chuyên đề Toán 10:  Cho Sn=11.5+15.9+19.13++1(4n3)(4n+1)...

Bài 4 trang 29 Chuyên đề Toán 10: Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = 1qn1q,..

Bài 5 trang 29 Chuyên đề Toán 10: Chứng minh với mọi n  *, ta có: a) 4n + 15n – 1 chia hết cho 9...

Bài 6 trang 29 Chuyên đề Toán 10: Chứng minh nn > (n + 1)n – 1 với n  *, n ≥ 2...

Bài 7 trang 29 Chuyên đề Toán 10: Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1)...

Bài 8 trang 29 Chuyên đề Toán 10: Cho tam giác đều màu xanh (Hình thứ nhất). a) Nêu quy luật chọn tam giác đều...

Bài 10 trang 30 Chuyên đề Toán 10: Giả sử năm đầu tiên, cô Hạnh gửi vào ngân hàng A (đồng) với lãi suất r%/năm...

Bài 11 trang 30 Chuyên đề Toán 10: Một người gửi số tiền A (đồng) vào ngân hàng. Biểu lãi suất của ngân hàng...

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:

Bài 2: Nhị thức newton

Bài 1: Elip

Bài 2: Hypebol

Bài 3: Parabol

Bài 4: Ba đường conic

1 394 10/11/2022


Xem thêm các chương trình khác: