Chuyên đề Toán 10 Bài 4 (Cánh diều): Ba đường conic
Với giải bài tập Chuyên đề Toán 10 Bài 4: Ba đường conic sách Cánh diều hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Chuyên đề học tập Toán 10 CD Bài 4.
Giải bài tập Chuyên đề Toán 10 Bài 4: Ba đường conic
Giải bài tập trang 60, 66 Chuyên đề Toán 10 Bài 4
Hoạt động trang 60 Chuyên đề Toán 10:
Lời giải:
- Với mọi điểm M thuộc elip (E): (a > b >0), ta luôn có (0 < e < 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc hypebol (H): (a > 0, b > 0), ta luôn có (e > 1), trong đó F là một trong hai tiêu điểm F1, F2 và Δ là đường chuẩn ứng với tiêu điểm F.
- Với mọi điểm M thuộc parabol (P): y2 = 2px (p > 0), ta luôn có , trong đó F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm F.
Bài 1 trang 66 Chuyên đề Toán 10:
Cho hình chữ nhật ABCD với bốn đỉnh A(–4; 3), B(4; 3), C(4; –3), D(–4; –3).
a) Viết phương trình chính tắc của elip nhận ABCD là hình chữ nhật cơ sở. Vẽ elip đó.
b) Viết phương trình chính tắc của hypebol nhận ABCD là hình chữ nhật cơ sở. Vẽ hypebol đó.
Lời giải:
Gọi M, N lần lượt là trung điểm của AB, BC.
Toạ độ của M là
Toạ độ của N là
a) Gọi phương trình chính tắc của elip cần tìm là (a > b > 0).
Vì ABCD là hình chữ nhật cơ sở của elip nên M, N là hai đỉnh của elip.
Lại có: M(0; 3) b = 3, N(4; 0) a = 4.
Vậy phương trình chính tắc của elip cần tìm là
+) Vẽ elip:
Ta thấy a = 4, b = 3. Toạ độ các đỉnh của elip là (–4; 0), (5; 0), (0; – 3), (0; 3).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Tìm một số điểm cụ thể thuộc elip, chẳng hạn ta thấy điểm và điểm thuộc (E). Do đó các điểm , cũng thuộc .
Bước 3. Vẽ đường elip (E) đi qua các điểm cụ thể trên, nằm ở phía trong hình chữ nhật cơ sở và tiếp xúc với các cạnh của hình chữ nhật cơ sở tại bốn đỉnh của (E) là
(–4; 0), (4; 0), (0; –3), (0; 3).
b)
Gọi phương trình chính tắc của hypebol cần tìm là (a > 0, b > 0).
Vì M(0; 3) và N(4;0) là trung điểm các cạnh của hình chữ nhật cơ sở nên a = 4, b = 3.
Vậy phương trình chính tắc của hypebol cần tìm là
+) Vẽ hypebol:
Ta thấy a = 4, b = 3. (H) có các đỉnh là (–4; 0), (4; 0).
Bước 1. Vẽ hình chữ nhật cơ sở có bốn cạnh thuộc bốn đường thẳng x = –4, x = 4, y = –3, y = 3.
Bước 2. Vẽ hai đường chéo của hình chữ nhật cơ sở.
Tim một số điểm cụ thể thuộc hypebol, chẳng hạn ta thấy điểm thuộc (H). Do đó các điểm thuộc (H).
Bước 3. Vẽ đường hypebol bên ngoài hình chữ nhật cơ sở; nhánh bên trái tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (–4; 0) và đi qua X2, X3; nhánh bên phải tiếp xúc với cạnh của hình chữ nhật cơ sở tại điểm (4; 0) và đi qua X, X1. Vẽ các điểm thuộc hypebol càng xa gốc toạ độ thì càng sát với đường tiệm cận. Hypebol nhận gốc toạ độ là tâm đối xứng và hai trục toạ độ là hai trục đối xứng.
Giải bài tập trang 67 Chuyên đề Toán 10 Bài 4
Bài 2 trang 67 Chuyên đề Toán 10:
Lời giải:
a) Đây là đường elip.
Ta có a = 10, b = 8
Độ dài trục lớn là 2a = 20, độ dài trục bé là 2b = 16.
Toạ độ các tiêu điểm là F1(–6; 0) và F2(6; 0).
Tiêu cự là 2c = 12.
Tâm sai là
b) Đây là đường hypebol.
Ta có a = 6, b = 8
Độ dài trục thực là 2a = 12, độ dài trục ảo là 2b = 16.
Toạ độ các tiêu điểm là F1(–10; 0) và F2(10; 0).
Tiêu cự là 2c = 20.
Tâm sai là
Bài 3 trang 67 Chuyên đề Toán 10:
Lời giải:
Ta có: 2p = 2
Vậy tiêu điểm của parabol là và đường chuẩn của parabol là
Vẽ parabol:
Bước 1. Lập bảng giá trị
x |
0 |
0,5 |
0,5 |
2 |
2 |
4,5 |
4,5 |
y |
0 |
–1 |
1 |
–2 |
2 |
–3 |
3 |
Chú ý rằng ứng với mỗi giá trị dương của x có hai giá trị của y đối nhau.
Bước 2. Vẽ các điểm cụ thể mà hoành độ và tung độ được xác định như trong bảng giá trị.
Bước 3. Vẽ parabol bên phải trục Oy, đỉnh O, trục đối xứng là Ox, parabol đi qua các điểm được vẽ ở Bước 2.
Bài 4 trang 67 Chuyên đề Toán 10:
Lời giải:
a) Ta viết lại phương trình đường thẳng Δ: x + 0 . y + 5 = 0. Khi đó:
b)
– Vì nên A nằm trên elip nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó.
– Vì nên A nằm trên hypebol nhận F là tiêu điểm và Δ là đường chuẩn ứng với tiêu điểm đó.
– Vì nên A nằm trên parabol nhận F là tiêu điểm và Δ là đường chuẩn.
Bài 5 trang 67 Chuyên đề Toán 10:
Lời giải:
Chọn hệ trục toạ độ sao cho tâm Trái Đất trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là (a > b > 0).
Theo đề bài, ta có: vệ tinh cách bề mặt Trái Đất gần nhất là 583 dặm và xa nhất là 1342 dặm, mà bán kính của Trái Đất xấp xỉ 4000 dặm nên vệ tinh cách tâm Trái Đất gần nhất là 583 + 4000 = 4583 dặm và xa nhất là 1342 + 4000 = 5342 dặm.
Giả sử vệ tinh có toạ độ là M(x; y).
Khi đó khoảng cách từ vệ tinh đến tâm Trái Đất là: MF1 = a + x.
Vì –a ≤ x ≤ a nên a – c ≤ MF1 ≤ a + c.
Vậy khoảng cách nhỏ nhất và lớn nhất từ vệ tinh đến tâm Trái Đất lần lượt là a – c và a + c.
Vậy tâm sai của quỹ đạo này xấp xỉ 0,076.
Bài 6 trang 67 Chuyên đề Toán 10:
Tìm khoảng cách nhỏ nhất (gần đúng) giữa Sao Diêm Vương và Mặt Trời.
Lời giải:
Chọn hệ trục toạ độ sao cho Mặt Trời trùng với tiêu điểm F1 của elip.
Khi đó elip có phương trình là (a > b > 0).
Theo đề bài, ta có: elip này có bán trục lớn a ≈ 5,906 . 106 km và tâm sai e ≈ 0,249
Giả sử Sao Diêm Vương có toạ độ là M(x; y).
Khi đó khoảng cách giữa Sao Diêm Vương và Mặt Trời là: MF1 = a + ex.
Vì x ≥ –a nên MF1 ≥ a – ea ≈ 5,906 . 106 – 0,249 . 5,906 . 106 = 4435406 (km).
Vậy khoảng cách nhỏ nhất giữa Sao Diêm Vương và Mặt Trời xấp xỉ 4435406 km.
Bài 7 trang 67 Chuyên đề Toán 10:
Cho đường thẳng Δ và điểm O sao cho khoảng cách từ O đến Δ là OH = 1 (Hình 39).
Lời giải:
Chọn hệ trục toạ độ sao cho điểm O trùng với gốc toạ độ và trục Ox trùng với đường thẳng OH.
Giả sử M có toạ độ (x; y) thì K có toạ độ là (–1; y).
Khi đó:
MK2 – MO2 = 1
{[x – (–1)]2 + (y – y)2} – [(0 – x)2 + (0 – y)2] = 1
{(x + 1)2 + 02} – [x2 + y2] = 1
(x2 + 2x +1) – (x2 + y2) = 1
2x +1 – y2 = 1
y2 = 2x.
Vậy tập hợp các điểm M là parabol có phương trình y2 = 2x.
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều