Giải bài tập trang 29 Chuyên đề Toán 10 Bài 1 - Cánh diều
Với Giải bài tập trang 29 Chuyên đề Toán 10 trong Bài 1: Phương pháp quy nạp toán học sách Chuyên đề Toán lớp 10 Cánh diều hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 29.
Giải bài tập trang 29 Chuyên đề Toán 10 Bài 1 - Cánh diều
Bài 1 trang 29 Chuyên đề Toán 10:
Cho Sn = 1 + 2 + 22 +... + 2n và Tn = 2n + 1 – 1, với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a) S1 = 1 + 21 = 3, S2 = 1 + 2 + 22 = 7, S3 = 1 + 2 + 22 + 23 = 15.
T1 = 21 + 1 – 1 = 3, T2 = 22 + 1 – 1 = 7, T3 = 23 + 1 – 1 = 15.
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Sk + 1 = 1 + 2 + 22 +... + 2k + 2k + 1
= Sk + 2k + 1
= Tk + 2k + 1
= (2k + 1 – 1) + 2k + 1
= 2 . 2k + 1 – 1
= 2k + 2 – 1
= 2(k + 1) + 1 – 1
=Tk + 1.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy Sn = Tn = 2n + 1 – 1 với n ℕ*.
Bài 2 trang 29 Chuyên đề Toán 10:
Cho và , với n ℕ*.
a) So sánh S1 và T1; S2 và T2; S3 và T3.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a)
Vậy S1 = T1; S2 = T2; S3 = T3.
b) Ta dự đoán Sn = Tn với n ℕ*.
+) Khi n = 1, ta có: S1 = T1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: Sk + 1 = Tk + 1.
Thật vậy, theo giả thiết quy nạp ta có: Sk = Tk.
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy Sn = Tn = với n ℕ*.
Bài 3 trang 29 Chuyên đề Toán 10:
Cho , với n ℕ*.
a) Tính S1, S2, S3, S4.
b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp toán học.
Lời giải:
a)
b) Ta dự đoán
+) Khi n = 1, ta có:
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Thật vậy, theo giả thiết quy nạp ta có:
Khi đó:
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*. Vậy với n ℕ*.
Bài 4 trang 29 Chuyên đề Toán 10:
Cho q là số thực khác 1. Chứng minh: 1 + q + q2 +... + qn – 1 = với n ℕ*.
Lời giải:
+) Khi n = 1, ta có: 1 =
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 1 + q + q2 +... + qk – 1 + q(k + 1) – 1 =
Thật vậy, theo giả thiết quy nạp ta có: 1 + q + q2 +... + qk – 1 =
Khi đó:
1 + q + q2 +... + qk – 1 + q(k + 1) – 1
= (1 + q + q2 +... + qk – 1) + q(k + 1) – 1
= + q(k + 1) – 1
= + qk
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Bài 5 trang 29 Chuyên đề Toán 10:
Chứng minh với mọi n ℕ*, ta có:
a) 4n + 15n – 1 chia hết cho 9;
b) 13n – 1 chia hết cho 6.
Lời giải:
a)
+) Khi n = 1, ta có: 41 + 15 . 1 – 1 = 18 ⁝ 9.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 4k + 1 + 15(k+1) – 1 ⁝ 9.
Thật vậy, theo giả thiết quy nạp ta có: 4k + 15k – 1 ⁝ 9.
Khi đó:
4k + 1 + 15(k+1) – 1
= 4 . 4k + 15k + 14
= 4. 4k + (60k – 45k) + (–4 + 18)
= (4 . 4k + 60k – 4) – 45k + 18
= 4 . (4k + 15k – 1) – 45k + 18
Vì 4k + 15k – 1, 45k và 18 đều chia hết cho 9 nên 4 . (4k + 15k – 1) – 45k + 18 ⁝ 9, do đó 4k + 1 + 15(k+1) – 1 ⁝ 9.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
b)
+) Khi n = 1, ta có: 131 – 1 = 12 ⁝ 6.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: 13k + 1 – 1 ⁝ 6.
Thật vậy, theo giả thiết quy nạp ta có: 13k – 1 ⁝ 6.
Khi đó:
13k + 1 – 1
= 13 . 13k – 1
= 13 . 13k – 13 + 12
= 13 . (13k – 1) + 12
Vì 13k – 1 và 12 đều chia hết cho 6 nên 13 . (13k – 1) + 12 ⁝ 6, do đó 13k + 1 – 1 ⁝ 6.
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề đã cho đúng với mọi n ℕ*.
Bài 6 trang 29 Chuyên đề Toán 10:
Chứng minh nn > (n + 1)n – 1 với n ℕ*, n ≥ 2.
Lời giải:
+) Khi n = 2, ta có: 22 > (2 + 1)2 – 1 4 > 3.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý (k ≥ 2) mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là: (k + 1)k + 1 > [(k+1) + 1](k + 1) – 1.
Thật vậy, theo giả thiết quy nạp ta có: kk > (k + 1)k – 1.
Suy ra: kk . (k + 1)k + 1 > (k + 1)k – 1 . (k + 1)k + 1
kk . (k + 1)k + 1 > (k + 1)2k
kk . (k + 1)k + 1 > [(k + 1)2]k
kk . (k + 1)k + 1 > (k2 + 2k + 1)k > (k2 + 2k)k = [k(k + 2)]k = kk . (k + 2)k
(k + 1)k + 1 > (k + 2)k = (k + 2)(k + 1) – 1
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*, n ≥ 2.
Bài 7 trang 29 Chuyên đề Toán 10:
Chứng minh an – bn = (a – b)(an – 1 + an – 2b + ... + abn –2 + bn – 1) với n ℕ*.
Lời giải:
+) Khi n = 1, ta có: a1 – b1 = a – b.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
ak + 1 – bk + 1 = (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1]
Thật vậy, theo giả thiết quy nạp ta có:
ak – bk = (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1)
Khi đó:
ak + 1 – bk + 1
= a . ak – b . bk
= a . ak – a . bk + a . bk – b . bk
= a . (ak – bk) + bk . (a – b)
= a . (a – b)(ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + bk . (a – b)
= (a – b) . a . (ak – 1 + ak – 2b + ... + abk –2 + bk – 1) + (a – b) . bk
= (a – b)(a . ak – 1 + a . ak – 2b + ... + a . abk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a1 + (k – 1) + a1 + (k – 2)b + ... + a2bk – 2 + a . bk – 1) + (a – b) . bk
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + a2b(k + 1) – 3 + ab(k + 1) –2] + (a – b) . b(k + 1) – 1
= (a – b)[a(k + 1) – 1 + a(k + 1) – 2b + ... + ab(k + 1) –2 + b(k + 1) – 1].
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*.
Bài 8 trang 29 Chuyên đề Toán 10:
Cho tam giác đều màu xanh (Hình thứ nhất).
a) Nêu quy luật chọn tam giác đều màu trắng ở Hình thứ hai.
b) Nêu quy luật chọn các tam giác đều màu trắng ở Hình thứ ba.
c) Nêu quy luật tiếp tục chọn các tam giác đều màu trắng từ Hình thứ tư và các tam giác đều màu trắng ở những hình sau đó.
d) Tinh số tam giác đều màu xanh lần lượt trong các Hình thứ nhất, Hình thú hai, Hình thứ ba.
e) Dự đoán số tam giác đều màu xanh trong Hình thứ n. Chứng minh kết quả đó bằng phương pháp quy nạp toán học.
Lời giải:
a) Tam giác đều màu trắng ở Hình thứ hai có đỉnh là trung điểm các cạnh của tam giác đều màu xanh ở hình thứ nhất.
b) Giữ nguyên tam giác đều màu trắng ở Hình thứ hai, với mỗi tam giác đều màu xanh ở Hình thứ hai, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
c) Giữ nguyên các tam giác đều màu trắng ở Hình thứ ba, với mỗi tam giác đều màu xanh ở Hình thứ ba, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
Như vậy, ta có quy luật chọn các tam giác đều màu trắng ở hình thứ n:
Giữ nguyên các tam giác đều màu trắng ở Hình thứ n – 1, với mỗi tam giác đều màu xanh ở Hình thứ n – 1, ta lại chọn các tam giác đều màu trắng như cách ở Hình thứ nhất.
d) Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Số tam giác đều màu xanh ở Hình thứ hai là: 3.
Số tam giác đều màu xanh ở Hình thứ ba là: 9.
e) Dự đoán số tam giác đều màu xanh ở Hình thứ n là: 3n – 1.
Xét mệnh đề P(n): "Số tam giác đều màu xanh ở Hình thứ n là 3n – 1 với n ℕ*".
Chứng minh:
+) Khi n = 1, ta có: Số tam giác đều màu xanh ở Hình thứ nhất là: 1.
Vậy mệnh đề đúng với n = 1.
+) Với k là một số nguyên dương tuỳ ý mà mệnh đề đúng, ta phải chứng minh mệnh đề cũng đúng với k + 1, tức là:
Số tam giác đều màu xanh ở Hình thứ (k + 1) là 3(k + 1) –1.
Thật vậy, theo giả thiết quy nạp ta có:
Số tam giác đều màu xanh ở Hình thứ k là 3k –1.
Vì với cách chọn như trên, mỗi tam giác đều màu xanh sẽ tạo ta 3 tam giác đều màu xanh mới ở hình tiếp theo nên từ 3k – 1 tam giác đều màu xanh ở Hình thứ k sẽ cho ta 3 . 3k – 1 = 3k = 3(k + 1) – 1 tam giác đều màu xanh ở Hình thứ (k + 1).
Vậy mệnh đề cũng đúng với n = k + 1. Do đó theo nguyên lí quy nạp toán học, mệnh đề P(n) đúng với mọi n ℕ*.
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Cánh diều hay, chi tiết khác:
Giải bài tập trang 23, 25 Chuyên đề Toán 10 Bài 1
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Cánh Diều
- Tác giả tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Bố cục tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Cánh Diều
- Soạn văn lớp 10 (ngắn nhất) – Cánh Diều
- Giải sbt Ngữ văn lớp 10 – Cánh Diều
- Văn mẫu lớp 10 – Cánh Diều
- Giải Chuyên đề học tập Ngữ văn 10 – Cánh diều
- Giải sgk Tiếng Anh 10 – Explore new worlds
- Giải sgk Tiếng Anh 10 – ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh 10 ilearn Smart World đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 i-learn Smart World
- Giải sbt Tiếng Anh 10 - iLearn Smart World
- Giải sgk Vật lí 10 – Cánh Diều
- Giải sbt Vật lí 10 – Cánh Diều
- Lý thuyết Vật lí 10 – Cánh Diều
- Giải Chuyên đề Vật lí 10 – Cánh Diều
- Giải sgk Hóa học 10 – Cánh Diều
- Lý thuyết Hóa học 10 – Cánh Diều
- Giải sbt Hóa học 10 – Cánh Diều
- Giải Chuyên đề Hóa học 10 – Cánh Diều
- Giải sgk Sinh học 10 – Cánh Diều
- Giải sbt Sinh học 10 – Cánh Diều
- Lý thuyết Sinh học 10 – Cánh Diều
- Giải Chuyên đề Sinh học 10 – Cánh diều
- Giải sgk Lịch sử 10 – Cánh Diều
- Giải sbt Lịch sử 10 – Cánh Diều
- Giải Chuyên đề Lịch sử 10 – Cánh Diều
- Lý thuyết Lịch sử 10 – Cánh diều
- Giải sgk Địa lí 10 – Cánh Diều
- Lý thuyết Địa Lí 10 – Cánh Diều
- Giải sbt Địa lí 10 – Cánh Diều
- Giải Chuyên đề Địa lí 10 – Cánh Diều
- Lý thuyết Công nghệ 10 – Cánh Diều
- Giải sgk Công nghệ 10 – Cánh Diều
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Cánh Diều
- Giải Chuyên đề Kinh tế pháp luật 10 – Cánh diều
- Lý thuyết KTPL 10 – Cánh diều
- Lý thuyết Giáo dục quốc phòng 10 – Cánh Diều
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Cánh diều
- Giải sbt Giáo dục quốc phòng - an ninh 10 – Cánh Diều
- Giải sgk Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sbt Hoạt động trải nghiệm 10 – Cánh Diều
- Giải sgk Tin học 10 – Cánh Diều
- Giải sbt Tin học 10 – Cánh Diều
- Giải Chuyên đề Tin học 10 – Cánh diều
- Lý thuyết Tin học 10 - Cánh diều
- Giải sgk Giáo dục thể chất 10 – Cánh Diều