Bài 2.29 trang 57 Toán 11 Tập 1 | Kết nối tri thức Giải Toán 11

Lời giải Bài 2.29 trang 57 Toán 11 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 11.

1 705 03/06/2023


Giải Toán 11 Bài tập cuối chương 2

Bài 2.29 trang 57 Toán 11 Tập 1: Chứng minh rằng:

a) Trong một cấp số cộng (un), mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là trung bình cộng của hai số hạng đứng kề với nó, nghĩa là

uk=uk1+uk+12 với k ≥ 2.

b) Trong một cấp số nhân, bình phương của mỗi số hạng (trừ số hạng đầu và số hạng cuối, nếu có) đều là tích của hai số hạng đứng kề với nó, nghĩa là

uk2=uk1.uk+1 với k ≥ 2.

Lời giải:

a) Giả sử (un) là cấp số cộng với công sai d. Khi đó với k ≥ 2, ta có:

uk – 1 = uk – d và uk + 1 = uk + d.

Suy ra uk – 1 + uk + 1 = (uk – d) + (uk + d) = 2uk hay uk=uk1+uk+12 (đpcm).

b) Giả sử cấp số nhân có công bội là q. Khi đó với k ≥ 2, ta có:

uk – 1 = u1 . qk – 1 – 1 = u1 . qk – 2;

uk + 1 = u1 . qk + 1 – 1 = u1 . qk.

Suy ra uk – 1 . uk + 1 = (u1 . qk – 2) . (u1 . qk) = u12.qk2+k=u12.q2k2 = (u1 . qk – 1)2 = uk2 (đpcm).

1 705 03/06/2023


Xem thêm các chương trình khác: