Lý thuyết Các phép toán với đa thức nhiều biến – Toán lớp 8 Chân trời sáng tạo

Với lý thuyết Toán lớp 8 Bài 2: Các phép toán với đa thức nhiều biến chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 8.

1 1,727 07/12/2023


Lý thuyết Toán 8 Bài 2: Các phép toán với đa thức nhiều biến - Chân trời sáng tạo

Bài giảng Toán 8 Bài 2: Các phép toán với đa thức nhiều biến - Chân trời sáng tạo

A. Lý thuyết Các phép toán với đa thức nhiều biến

1. Cộng và trừ hai đa thức

Để cộng, trừ hai đa thức ta thực hiện các bước:

- Bỏ dấu ngoặc (sử dụng quy tắc dấu ngoặc);

- Nhóm các đơn thức đồng dạng (sử dụng tính chất giao hoán và kết hợp);

- Cộng, trừ các đơn thức đồng dạng

Ví dụ:

Cho hai đa thức A=3x2xyB=x2+2xyy2

A+B=(3x2xy)+(x2+2xyy2)=3x2xy+x2+2xyy2=(3x2+x2)+(xy+2xy)y2=4x2+xyy2

AB=(3x2xy)(x2+2xyy2)=3x2xyx22xy+y2=(3x2x2)+(xy2xy)+y2=2x23xy+y2

2. Nhân hai đơn thức

Để nhân hai đơn thức, ta nhân các hệ số với nhau, nhân các lũy thừa cùng biến, rồi nhân các kết quả đó với nhau.

Ví dụ: (3x2y)(4xy)=[(3.4)].(x2.x).(y.y)=12.x3.y2

3. Nhân đơn thức với đa thức

Để nhân đơn thức với đa thức, ta nhân đơn thức đó với từng hạng tử của đa thức, rồi cộng các kết quả với nhau.

Ví dụ:

3x2y(2x2yxy+3y2)=(3x2y).(2x2y)(3x2y).(xy)+(3x2y).(3y2)=3.2.(x2.x2)(y.y)3.(x2.x).(y.y)+3.3.x2.(y.y2)=6x4y23x3.y2+9x2y3

4. Nhân hai đa thức

Để nhân hai đa thức, ta nhân từng hạng tử của đa thức này với đa thức kia, rồi cộng các kết quả với nhau.

Ví dụ:

(xy+1)(xy3)=(xy).(xy)+xy3xy3=x2y22xy3

5. Chia đơn thức cho đơn thức

Muốn chia đơn thức A cho đơn thức B (với A chia hết cho B), ta làm như sau:

- Chia hệ số của A cho hệ số của B.

- Chia lũy thừa của từng biến trong A cho lũy thừa của cùng biến đó trong B.

- Nhân các kết quả vừa tìm được cho nhau.

Ví dụ:

16x4y3:(8x3y2)=(16:(8)).(x4:x3).(y3:y2)=2xy

6. Chia đa thức cho đơn thức

Muốn chia một đa thức cho một đơn thức (trường hợp chia hết), ta chia từng hạng tử của đa thức cho đơn thức đó, rồi cộng các kết quả tìm được với nhau.

Ví dụ:

(x2y+y2x):xy=x2y:xy+y2x:xy=x+y

B. Bài tập Các phép toán với đa thức nhiều biến

Đang cập nhật ...

Xem thêm tóm tắt lý thuyết Toán lớp 8 sách Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 3: Hằng đẳng thức đáng nhớ

Lý thuyết Bài 4: Phân tích đa thức thành nhân tử

Lý thuyết Bài 5: Phân thức đại số

Lý thuyết Bài 6: Cộng, trừ phân thức

Lý thuyết Bài 7: Nhân, chia phân thức

1 1,727 07/12/2023


Xem thêm các chương trình khác: