Lý thuyết Đơn thức và đa thức nhiều biến – Toán lớp 8 Chân trời sáng tạo
Với lý thuyết Toán lớp 8 Bài 1: Đơn thức và đa thức nhiều biến chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Chân trời sáng tạo sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 8.
Lý thuyết Toán 8 Bài 1: Đơn thức và đa thức nhiều biến - Chân trời sáng tạo
Bài giảng Toán 8 Bài 1: Đơn thức và đa thức nhiều biến - Chân trời sáng tạo
A. Lý thuyết Đơn thức và đa thức nhiều biến
1. Đơn thức
Đơn thức là biểu thức đại số chỉ gồm một số, hoặc một biến, hoặc một tích giữa các số và các biến.
Ví dụ: là các đơn thức.
Đơn thức thu gọn là đơn thức chỉ gồm tích của một số với các biến mà mỗi biến chỉ xuất hiện một lần dưới dạng nâng lên lũy thừa với số mũ nguyên dương.
Ví dụ:
là các đơn thức thu gọn.
không phải là các đơn thức thu gọn.
Trong một đơn thức thu gọn, phần số còn gọi là hệ số, phần còn lại gọi là phần biến.
Ví dụ: đơn thức có hệ số là 3, phần biến là .
Tổng số mũ của các biến trong một đơn thức thu gọn với hệ số khác 0 gọi là bậc của đơn thức đó.
Chú ý: + Số thực khác 0 là đơn thức bậc không.
+ Số 0 được gọi là đơn thức không có bậc.
Ví dụ: có bậc là
có bậc là
Hai đơn thức đồng dạng là hai đơn thức có hệ số khác 0 và có cùng phần biến.
Ví dụ:
Hai đơn thức và có hệ số khác 0 và có cùng phần biến nên chúng là hai đơn thức đồng dạng.
Hai đơn thức và không có cùng phần biến nên chúng không phải là hai đơn thức đồng dạng.
Cộng, trừ các đơn thức đồng dạng như thế nào?
Để cộng (hay trừ) các đơn thức đồng dạng, ta cộng (hay trừ) các hệ số với nhau và giữ nguyên phần biến.
Ví dụ:
2. Đa thức
Đa thức là một tổng của những đơn thức.
Mỗi đơn thức trong tổng gọi là một hạng tử của đa thức đó.
Chú ý: mỗi đơn thức được gọi là một đa thức (chỉ chứa một hạng tử).
Số 0 được gọi là đơn thức không, cũng gọi là đa thức không.
Ví dụ: là đa thức.
không phải là đa thức.
có 3 hạng tử.
có 4 hạng tử.
Đa thức thu gọn là gì?
Đa thức thu gọn là đa thức không chưa hai hạng tử nào đồng dạng.
Thu gọn đa thức như thế nào?
Biến đổi một đa thức thành đa thức thu gọn gọi là thu gọn đa thức đó.
Để thu gọn một đa thức, ta nhóm các hạng tử đồng dạng với nhau và cộng các hạng tử đồng dạng đó với nhau.
Ví dụ:
Chú ý: Bậc của hạng tử có bậc cao nhất trong dạng thu gọn của đa thức gọi là bậc của đa thức đó.
Tính giá trị của đa thức như thế nào?
Để tính giá trị của một đa thức tại những giá trị cho trước của các biến, ta thay những giá trị cho trước đó vào biểu thức xác định đa thức rồi thực hiện phép tính.
Ví dụ: Giá trị của biểu thức tại x = 2, y = 1 là:
B. Bài tập Đơn thức và đa thức nhiều biến
Đang cập nhật ...
Xem thêm tóm tắt lý thuyết Toán lớp 8 sách Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 2: Các phép toán với đa thức nhiều biến
Lý thuyết Bài 3: Hằng đẳng thức đáng nhớ
Lý thuyết Bài 4: Phân tích đa thức thành nhân tử
Xem thêm các chương trình khác:
- Soạn văn lớp 8 Chân trời sáng tạo (hay nhất)
- Văn mẫu lớp 8 - Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn 8 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 8 – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 8 - Chân trời sáng tạo
- Giải SBT Ngữ văn 8 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 8 – Chân trời sáng tạo
- Soạn văn 8 Chân trời sáng tạo (ngắn nhất)
- Giải sgk Tiếng Anh 8 – Friends Plus
- Giải sbt Tiếng Anh 8 - Friends plus
- Trọn bộ Từ vựng Tiếng Anh 8 Friends plus đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh 8 Friends plus đầy đủ nhất
- Giải sgk Khoa học tự nhiên 8 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 8 – Chân trời sáng tạo
- Giải sgk Lịch sử 8 – Chân trời sáng tạo
- Lý thuyết Lịch sử 8 - Chân trời sáng tạo
- Giải sbt Lịch sử 8 – Chân trời sáng tạo
- Giải sgk Địa lí 8 – Chân trời sáng tạo
- Lý thuyết Địa lí 8 - Chân trời sáng tạo
- Giải sbt Địa lí 8 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 8 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 8 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 8 – Chân trời sáng tạo
- Giải sgk Công nghệ 8 – Chân trời sáng tạo
- Lý thuyết Công nghệ 8 - Chân trời sáng tạo
- Giải sbt Công nghệ 8 – Chân trời sáng tạo
- Giải sgk Tin học 8 – Chân trời sáng tạo
- Lý thuyết Tin học 8 - Chân trời sáng tạo
- Giải sbt Tin học 8 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 8 – Chân trời sáng tạo