Giải SBT Toán 10 trang 20 Tập 2 Chân trời sáng tạo

Với Giải SBT Toán 10 trang 20 Tập 2 trong Bài tập cuối chương 7 Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 20.

1 402 09/12/2022


Giải SBT Toán 10 trang 20 Tập 2 Chân trời sáng tạo

Câu 5 trang 20 SBT Toán 10 Tập 2: Cho đồ thị của hàm số bậc hai y = f(x) như Hình 1.

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Tập nghiệm của bất phương trình fx0 là:

A. 1;2;

B. 1;2;

C. ;12;+;

D. ;12;+.

Lời giải:

Đáp án đúng là D

Tập nghiệm của bất phương trình fx0  ;12;+.

Câu 6 trang 20 SBT Toán 10 Tập 2: Bất phương trình nào có tập nghiệm là (2; 5)?

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là B

+) Tam thức bậc hai f ( x ) = x2 – 7x +10 có = ( – 7)2 – 4.1.10 = 9 > 0 nên f(x) có hai nghiệm phân biệt x1 = 2 và x2 = 5, a = 1 > 0 nên ta có:

f ( x ) > 0 với x < 2 hoặc x > 5.

f ( x ) < 0 với 2 < x < 5.

Do đó A sai, B đúng.

+) Tam thức bậc hai f ( x ) = x2+13x30  = 132 – 4.1.(– 30) = 289 > 0 nên f(x) hai nghiệm phân biệt x1 = 2 và x2 = –15, a = 1 > 0 nên ta có:

f ( x ) > 0 với x < –15 hoặc x > 2.

f ( x ) < 0 với –15 < x < 2.

Do đó C, D sai.

Vậy đáp án đúng là B.

Câu 7 trang 20 SBT Toán 10 Tập 2: Tập xác định của hàm sốy=19x23x2+3x là:

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Lời giải:

Đáp án đúng là B

Hàm số trên xác định khi và chỉ khi 3 – x ≥ 0 và 9x2 – 3x – 2 > 0

+) Ta có 3 – x ≥ 0 khi và chỉ khi x ≤ 3 (1)

+) Xét tam thức bậc hai f ( x ) = 9x2 – 3x – 2 có = (– 3)2 – 4.9.(– 2) = 81 > 0 nên f(x) có hai nghiệm phân biệt x1 = 23 và x2 = 13, và a = 9 > 0 nên f ( x ) > 0 với ;1323;+ (2)

Từ (1) và (2) suy ra tập xác định của hàm số trên là ;1323;3.

Vậy đáp án đúng là B.

Câu 8 trang 20 SBT Toán 10 Tập 2: Với giá trị nào của tham số m thì phương trình 2m+6x2+4mx+3=0có hai nghiệm phân biệt?

A. m<32 hoặc m > 3;

B. 32<m<3;

C. m < - 3  hoặc 3<m<32 hoặc m > 3;

D. 3<m<32 hoặc m > 3.

Lời giải:

Đáp án đúng là A

+) 2m + 6 = 0 m = –3, khi đó phương trình trở thành –12x + 3 = 0 x = 14. Suy ra phương trình chỉ có một nghiệm duy nhất. Do đó không thỏa mãn.

+) 2m + 6 0 m –3

Khi đó phương trình 2m+6x2+4mx+3=0có hai nghiệm phân biệt khi và chỉ khi

∆ = (4m)2 – 4.3.(2m + 6) > 0 hay 2m2 – 3m – 9 > 0

Tam thức bậc hai f ( x ) = 2m2 – 3m – 9 có hai nghiệm phân biệt x1 = 3 và x2 = 32,

a = 2 > 0 nên f ( x ) > 0 với x < 32 hoặc x > 3 (2)

Từ điều kiện (1) và (2) suy ra m < - 3  hoặc 3<m<32 hoặc m > 3.

Vậy đáp án đúng là C.

Câu 9 trang 20 SBT Toán 10 Tập 2: Giá trị nào là nghiệm của phương trình x2+x+11=2x213x+16?

A. x = – 5

B. x=13

C. Cả hai câu A, B đều đúng;

D. Cả hai câu A, B đều sai.

Lời giải:

Đáp án đúng là C

Bình phương hai vế của phương trình đã cho, ta được:

x2 + x + 11 = –2x2 – 13x + 16

3x2 + 14x – 5 = 0

x = 13 hoặc x = –5.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = 13 hoặc x = –5 đều thỏa mãn.

Vì vậy phương trình đã cho có hai nghiệm x = 13 và x = –5

Vậy đáp án đúng là C.

Câu 10 trang 20 SBT Toán 10 Tập 2: Khẳng định nào đúng với phương trình 2x23x1=3x22x13?

A. Phương trình có hai nghiệm phân biệt cùng dấu;

B. Phương trình có hai nghiệm phân biệt trái dấu;

C. Phương trình có một nghiệm;

D. Phương trinh vô nghiệm.

Lời giải:

Đáp án đúng là B

Bình phương hai vế của phương trình đã cho, ta được:

2x2 – 3x – 1 = 3x2 – 2x – 13

x2 + x – 12 = 0

x = 3 hoặc x = –4.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy x = 3 hoặc x = –4 đều thỏa mãn.

Suy ra phương trình đã cho có hai nghiệm x = 3 và x = –4. Vậy hai nghiệm của phương trình đã cho là hai nghiệm phân biệt trái dấu.

Đáp án đúng là B.

Câu 11 trang 20 SBT Toán 10 Tập 2: Khẳng định nào đúng với phương trình 5x2+27x+36=2x+5?

A. Phương trình có một nghiệm;

B. Phương trình vô nghiệm;

C. Tổng các nghiệm của phương trình là -7;

D. Các nghiệm của phương trình đều không bé hơn -52.

Lời giải:

Đáp án đúng là A

Bình phương hai vế của phương trình đã cho, ta được:

5x2 + 27x + 36 = 4x2 + 20x + 25

x2 + 7x + 11 = 0

x = 7+52 hoặc x = 7-52.

Thay lần lượt các giá trị trên vào phương trình đã cho, ta thấy chỉ có x = 7+52 thỏa mãn.

Vì vậy đáp án A đúng.

Câu 12 trang 20 SBT Toán 10 Tập 2: Cho đồ thị của hai hàm số bậc hai f(x) = ax2 + bx + c và g(x) = dx2 + ex + h như Hình 2.

Sách bài tập Toán 10 Bài tập cuối chương 7 - Chân trời sáng tạo (ảnh 1)

Khẳng định nào đúng với phương trình ax2+bx+c=dx2+ex+h?

A. Phương trình có hai nghiệm phân biệt là x = 1 và x = 6,

B. Phương trình có 1 nghiệm là x = l;

C. Phương trình có 1 nghiệm là x = 6;

D. Phương trình vô nghiệm.

Lời giải:

Đáp án đúng là B

Xét phương trình ax2+bx+c=dx2+ex+h

Bình phương hai vế ta được f ( x ) = g ( x )

Đồ thị hàm số f ( x ) và g ( x ) giao nhau tại hai điểm x = 1 và x = 6. Tuy nhiên tại

x = 6 thì g ( x ) < 0 và f ( x ) < 0 nên không thỏa mãn.

Vậy phương trình có 1 nghiệm là x = 1.

Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 10 trang 19 Tập 2

Giải SBT Toán 10 trang 21 Tập 2

Giải SBT Toán 10 trang 22 Tập 2

Giải SBT Toán 10 trang 23 Tập 2

1 402 09/12/2022


Xem thêm các chương trình khác: