Giải SBT Toán 7 trang 33 Tập 2 Chân trời sáng tạo

Với Giải SBT Toán 7 trang 33 Tập 2 trong Bài tập cuối chương 7 Toán lớp 7 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 7 trang 33.

1 260 30/12/2022


Giải SBT Toán 7 trang 33 Tập 2 Chân trời sáng tạo

Bài 1 trang 33 SBT Toán 7 Tập 2:

Cho B = xy3 + 4xy – 2x2 + 3. Tính giá trị của biểu thức B khi x = –1, y = 2.

Lời giải:

Khi x = –1, y = 2 thay vào biểu thức B ta được:

B = (–1) . 23 + 4 . (–1) . 2 – 2 . (–1)2 + 3

    = –8 – 8 – 2 + 3

    = –15.

Vậy giá trị của biểu thức B khi x = –1, y = 2 là B = –15.

Bài 2 trang 33 SBT Toán 7 Tập 2:

Trong các biểu thức sau, biểu thức nào là đơn thức một biến?

a) 2y;           b) 3x + 5;               c) 12;           d) 13 t2.

Lời giải:

Ta có:

+ Biểu thức a) là đơn thức một biến của biến y;

+ Biểu thức b) là đa thức một biến của biến x;

+ Biểu thức c) là đơn thức một biến.

+ Biểu thức d) là đơn thức một biến của biến t.

Vậy trong các biểu thức trên, biểu thức a), c), d) là đơn thức một biến.

Bài 3 trang 33 SBT Toán 7 Tập 2:

Trong các biểu thức sau, biểu thức nào là đa thức một biến?

5 – 2x;         6x2 + 8x3 + 3x – 2;            2x1;          14 t – 5.

Lời giải:

Ta có:

+ Biểu thức 5 – 2x là đa thức một biến của biến x;

+ Biểu thức 6x2 + 8x3 + 3x – 2 là đa thức một biến của biến x;

+ Biểu thức 2x1  không phải là đa thức một biến;

+ Biểu thức 14 t – 5 là đa thức một biến của biến t.

Vậy trong các biểu thức trên, các biểu thức là đa thức một biến là: 5 – 2x; 6x2 + 8x3 + 3x – 2; 14 t – 5.

Bài 4 trang 33 SBT Toán 7 Tập 2:

Hãy viết một đa thức một biến bậc bốn có 5 số hạng.

Lời giải:

Đa thức một biến bậc bốn có 5 số hạng là:

A(x) = x4 – 2x3 + 3x2 – 4x + 5.

Nhận xét: Bài này có nhiều cách trả lời.

Bài 5 trang 33 SBT Toán 7 Tập 2:

Hãy nêu bậc của các đa thức sau:

A = 5x2 – 2x4 + 7;            B = 17;                  C = 3x – 4x3 + 2x2 + 1.

Lời giải:

• Ta có:

A = 5x2 – 2x4 + 7

    = – 2x4 + 5x2 + 7

Đa thức A có bậc là 4 (vì số mũ lớn nhất của biến x là 4).

• Đa thức B = 17 có bậc là 0 (vì đa thức chỉ có số, không có biến x nên số mũ lớn nhất của biến là 0).

• Ta có:

C = 3x – 4x3 + 2x2 + 1

    = – 4x3 + 2x2 + 3x + 1

Đa thức C có bậc là 3 (vì số mũ lớn nhất của biến x là 3).

Bài 6 trang 33 SBT Toán 7 Tập 2:

Cho đa thức P(x) = x3 + 64. Tìm nghiệm của P(x) trong tập hợp {0; 4; –4}. 

Lời giải:

Cách 1: Xét đa thức P(x) = x3 + 64.

• Với x = 0 thay vào P(x) ta có:

P(0) = 03 + 64 = 64.

Do đó x = 0 không là nghiệm của P(x).

• Với x = 4 thay vào P(x) ta có:

P(4) = 43 + 64 = 64 + 64 = 128.

Do đó x = 4 không là nghiệm của P(x).

• Với x = –4 thay vào P(x) ta có:

P(–4) = (–4)3 + 64 = –64 + 64 = 0.

Do đó x = –4 là nghiệm của P(x).

Vậy trong các số thuộc tập hợp {0; 4; –4} thì có –4 là nghiệm của P(x).

Cách 2: Xét đa thức P(x) = x3 + 64.

Ta có P(x) = 0

Hay x3 + 64 = 0

Suy ra x3 = –64 = (–4)3

Do đó x = –4.

Vậy trong các số thuộc tập hợp {0; 4; –4} thì số –4 là nghiệm của P(x).

Bài 7 trang 33 SBT Toán 7 Tập 2:

Tam giác có độ dài hai cạnh là 3y + 2; 6y – 4 và chu vi bằng 23y – 5. Tìm cạnh chưa biết trong tam giác đó.

Lời giải:

Gọi A(y) là biểu thức biểu thị độ dài cạnh chưa biết trong tam giác đó.

Khi đó chu vi của tam giác đó là:

(3y + 2) + (6y – 4) + A(y)

= (3y + 6y) + (2 – 4) + A(y)

= 9y – 2 + A(y).

Mà theo bài tam giác đó có chu vi bằng 23y – 5 nên ta có:

9y – 2 + A(y) = 23y – 5

Suy ra A(y) = 23y – 5 – (9y – 2)

                    = 23y – 5 – 9y + 2

                    = (23y – 9y) + (–5 + 2)

                    = 14y – 3.

Vậy độ dài cạnh chưa biết trong tam giác đó là A(y) = 14y – 3.

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo với cuộc sống hay, chi tiết khác: 

Giải SBT Toán 7 trang 34 Tập 2

1 260 30/12/2022


Xem thêm các chương trình khác: