Chuyên đề Toán 10 Bài 6 (Kết nối tri thức): Hypebol - Kết nối tri thức
Với giải bài tập Chuyên đề Toán 10 Bài 6: Hypebol sách Kết nối tri thức hay nhất, chi tiết giúp học sinh dễ dàng làm bài tập Chuyên đề học tập Toán 10 KNTT Bài 6.
Giải bài tập Chuyên đề Toán 10 Bài 6: Hypebol
Giải bài tập trang 47, 48 Chuyên đề Toán 10 Bài 6
HĐ1 trang 47 Chuyên đề Toán 10:
Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc .
b) Tìm toạ độ các giao điểm của hypebol với trục hoành. Hypebol có cắt trục tung hay không? Vì sao?
c) Với điểm M(x0; y0) thuộc hypebol, hãy so sánh |x0| với a.
Lời giải:
a) Nếu điểm M(x0; y0) thuộc hypebol thì ta có:
Ta có: nên các điểm có toạ độ (x0; –y0), (–x0; y0), (–x0; –y0) cũng thuộc elip.
b)
+) Gọi A là giao điểm của hypebol với trục hoành.
Vì A thuộc trục Ox nên toạ độ của A có dạng (xA; 0)
Mà A thuộc hypebol nên
Do đó hypebol cắt trục Ox tại hai điểm A1(–a; 0) và A2(a; 0).
+) Giả sử hypebol cắt trục tung tại B.
Vì B thuộc trục Oy nên toạ độ của B có dạng (0; yB).
Mà B thuộc hypebol nên (vô lí).
Vậy hypebol không cắt trục tung.
c) M(x0; y0) thuộc hypebol nên ta có:
Vì nên
Luyện tập 1 trang 48 Chuyên đề Toán 10: Cho hypebol .
a) Tìm tiêu cự và độ dài các trục.
b) Tìm các đỉnh và các đường tiệm cận.
Lời giải:
a) Có a2 = 64, b2 = 36
Do đó, tiêu cự của hypebol là 2c = 20, độ dài trục thực là 2a = 16, độ dài trục ảo là 2b = 12.
b) Các đỉnh của hypebol là A1(–8; 0), A2(8; 0).
Hai đường tiệm cận của hypebol là và
Giải bài tập trang 49, 50 Chuyên đề Toán 10 Bài 6
HĐ2 trang 49 Chuyên đề Toán 10:
Cho điểm M(x0; y0) thuộc hypebol có hai tiêu điểm F1(–c; 0), F2(c; 0), độ dài trục thực bằng 2a.
Lời giải:
a) MF12 – MF22 = (x2 + 2cx + c2 + y2) – (x2 – 2cx + c2 + y2) = 4cx.
b) Ta có: MF12 – MF22 = 4cx (MF1 + MF2)(MF1 – MF2) = 4cx (MF1 + MF2)2a = 4cx
MF1 + MF2 = = x. Khi đó:
(MF1 + MF2) + (MF1 – MF2) = + 2a 2MF1 = + 2a
MF1 = a + x
(MF1 + MF2) – (MF1 – MF2) = – 2a 2MF2 = – 2a
MF2 = x – a
c) Ta có: MF12 – MF22 = 4cx (MF1 + MF2)(MF1 – MF2) = 4cx (MF1 + MF2)(–2a) = 4cx
MF1 + MF2 = = –x. Khi đó:
(MF1 + MF2) + (MF1 – MF2) = – + (–2a) 2MF1 = – – 2a
MF1 =
(MF1 + MF2) – (MF1 – MF2) = – – (–2a) 2MF2 = – + 2a
MF2 = a –x
Luyện tập 2 trang 50 Chuyên đề Toán 10:
Lời giải:
Hypebol có độ dài trục thực bằng 6, độ dài trục ảo bằng 6 2a = 6, 2b = 6
a = 3, b = 3
Theo công thức bán kính qua tiêu ta có:
MF1
MF2
Luyện tập 3 trang 50 Chuyên đề Toán 10:
Lời giải:
Có a2 = 1, b2 = 3
Gọi (x; y) là toạ độ của M.
Theo công thức bán kính qua tiêu ta có: MF2
Nếu M thuộc nhánh bên trái thì x ≤ –a = –1. Khi đó 1 – 2x ≥ 1 – 2(–1) = 3.
Suy ra MF2 = |1 – 2x| ≥ 3.
Nếu M thuộc nhánh bên phải thì x ≥ a = 1. Khi đó 1 – 2x ≤ 1 – 2.1 = –1.
Suy ra MF2 = |1 – 2x| ≥ 1.
Vậy MF2 nhỏ nhất bằng 1 khi x = 1.
Khi đó MF1
HĐ3 trang 50 Chuyên đề Toán 10:
Lời giải:
+) Viết lại phương trình đường thẳng Δ1 ở dạng: Với mỗi điểm M(x; y) thuộc elip, ta có:
suy ra
+) Viết lại phương trình đường thẳng Δ2 ở dạng: Với mỗi điểm M(x; y) thuộc elip, ta có:
suy ra
Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6
Lời giải:
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tâm sai (1).
+) Hypebol có một đường chuẩn là
Vậy phương trình chính tắc của hypebol đã cho là
Vận dụng trang 52 Chuyên đề Toán 10:
Lời giải:
Chọn hệ trục toạ độ sao cho tâm Mặt Trời trùng với tiêu điểm F1 của hypebol.
Gọi phương trình chính tắc của hypebol là (a > 0, b > 0).
Theo đề bài, ta có:
– Khoảng cách gần nhất từ sao chổi này đến tâm Mặt Trời là 3.108 km c – a = 3.
– Tâm sai của quỹ đạo hypebol là 3,6
Vậy phương trình chính tắc của hypebol đã cho là
Bài 3.7 trang 52 Chuyên đề Toán 10:
Lời giải:
Có a2 = 9, b2 = 4 a = 3, b = 2, c =
Toạ độ các đỉnh của hypebol là A1(–3; 0), A2(3; 0).
Độ dài trục thực là 2a = 6, độ dài trục ảo là 2b = 4.
Tâm sai e =
Phương trình các đường chuẩn của hypebol là:
Bài 3.8 trang 52 Chuyên đề Toán 10:
Lời giải:
Có a2 = 9, b2 = 7
Độ dài các bán kính qua tiêu của M là:
Bài 3.9 trang 52 Chuyên đề Toán 10:
a) (H) có nửa trục thực bằng 4, tiêu cự bằng 10;
b) (H) có tiêu cự bằng , một đường tiệm cận là ;
c) (H) có tâm sai , và đi qua điểm .
Lời giải:
a)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có nửa trục thực bằng 4 a = 4.
+) Hypebol có tiêu cự bằng 10 2c = 10 c = 5 b2 = c2 – a2 = 52 – 42 = 9.
Vậy phương trình chính tắc của hypebol đã cho là hay
b)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tiêu cự bằng
+) Hypebol có một đường tiệm cận là
Vậy phương trình chính tắc của hypebol đã cho là hay
c)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tâm sai
+) Hypebol đi qua điểm (2).
Thế (1) vào (2) ta được:
Vậy phương trình chính tắc của hypebol đã cho là
Bài 3.10 trang 52 Chuyên đề Toán 10:
Lời giải:
Giả sử phương trình chính tắc của một hypebol vuông là (a > 0, b > 0).
Vì độ dài trục thực bằng độ dài trục ảo nên a = b
Tâm sai e =
Phương trình hai đường tiệm cận là: và
Bài 3.11 trang 52 Chuyên đề Toán 10:
Lời giải:
Xét hypebol có phương trình chính tắc là (a > 0, b > 0).
Hai đường tiệm cận của hypebol là: d1 : hay bx + ay = 0 và d2 : hay bx – ay = 0.
Xét điểm M(x; y) bất kì thuộc hypebol. Ta có:
d(M, d1) = , d(M, d2) = .
d(M, d1).d(M, d2) = (*).
Mặt khác, vì M(x; y) thuộc hypebol nên
Thay vào (*) ta được: d(M, d1).d(M, d2) = (không đổi).
Vậy tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.
Bài 3.12 trang 52 Chuyên đề Toán 10:
a) Tính hiệu các khoảng cách từ tàu đến các trạm B, C.
b) Tính hiệu các khoảng cách từ tàu đến các trạm A, D.
Lời giải:
Gọi vận tốc phát tín hiệu là v (theo đề bài v = 292000 km/s);
tA, tB, tC, tD lần lượt là thời gian để tàu nhận được tín hiệu từ các trạm A, B, C, D;
M là vị trí của tàu thuỷ.
a) Hiệu các khoảng cách từ tàu đến các trạm B, C là:
MB – MC = v.tB – v.tC = v(tB – tC) = 292000 . 0,0005 = 146 (km).
b) Hiệu các khoảng cách từ tàu đến các trạm A, D là:
MA – MD = v.tD – v.tA = v(tD – tA) = 292000 . 0,001 = 292 (km).
c)
+) Gọi phương trình chính tắc của hypebol (H1) nhận B, C làm tiêu điểm là (a1 > 0, b1 > 0).
Vì MB – MC = 146 nên 2a1 = 146 a1 = 73 = 5329.
Ta thấy B(–100; 0) và C(100; 0) là hai tiêu điểm của hypebol nên c1 = 100
= 1002 – 732 = 4671.
Vậy phương trình chính tắc của hypebol (H1) là
+) Gọi phương trình chính tắc của hypebol (H2) nhận A, D làm tiêu điểm là (a2 > 0, b2 > 0).
Vì MA – MD = 29,2 nên 2a2 = 292 a2 = 146
Ta thấy A(–300; 0) và D(300; 0) là hai tiêu điểm của hypebol nên c2 = 300
= 3002 – 1462 = 68684.
Vậy phương trình chính tắc của hypebol (H2) là
Gọi toạ độ của M là (x; y). Vì M thuộc cả (H1) và (H2) nên ta có:
(vì theo hình vẽ x, y > 0)
d) MB = ≈ 299 (km);
MC = ≈ 153 (km).
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức