Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức
Với Giải bài tập trang 52 Chuyên đề Toán 10 trong Bài 6: Hypebol sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 52.
Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức
Luyện tập 4 trang 52 Chuyên đề Toán 10: Trong mặt phẳng toạ độ Oxy, hypebol (H) có phương trình chính tắc, có tâm sai e = 2 và một đường chuẩn là x = 8. Lập phương trình chính tắc của (H).
Lời giải:
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tâm sai (1).
+) Hypebol có một đường chuẩn là
Vậy phương trình chính tắc của hypebol đã cho là
Vận dụng trang 52 Chuyên đề Toán 10:
Một sao chổi đi qua hệ Mặt Trời theo quỹ đạo là một nhánh hypebol nhận tâm Mặt Trời là một tiêu điểm, khoảng cách gần nhất từ sao chổi này đến tâm Mặt Trời là 3.108 km và tâm sai của quỹ đạo hypebol là 3,6 (H.3.15).
Hãy lập phương trình chính tắc của hypebol chứa quỹ đạo, với 1 đơn vị đo trên mặt phẳng toạ độ ứng với 108 km trên thực tế.
Lời giải:
Chọn hệ trục toạ độ sao cho tâm Mặt Trời trùng với tiêu điểm F1 của hypebol.
Gọi phương trình chính tắc của hypebol là (a > 0, b > 0).
Theo đề bài, ta có:
– Khoảng cách gần nhất từ sao chổi này đến tâm Mặt Trời là 3.108 km c – a = 3.
– Tâm sai của quỹ đạo hypebol là 3,6
Vậy phương trình chính tắc của hypebol đã cho là
Bài 3.7 trang 52 Chuyên đề Toán 10:
Trong mặt phẳng toạ độ, cho hypebol có phương trình chính tắc . Xác định toạ độ các đỉnh, độ dài các trục, tâm sai và phương trình các đường chuẩn của hypebol.
Lời giải:
Có a2 = 9, b2 = 4 a = 3, b = 2, c =
Toạ độ các đỉnh của hypebol là A1(–3; 0), A2(3; 0).
Độ dài trục thực là 2a = 6, độ dài trục ảo là 2b = 4.
Tâm sai e =
Phương trình các đường chuẩn của hypebol là:
Bài 3.8 trang 52 Chuyên đề Toán 10:
Trong mặt phẳng toạ độ, cho hypebol có phương trình chính tắc . Tính bán kính qua tiêu của một điểm M thuộc hypebol và có hoành độ bằng 12.
Lời giải:
Có a2 = 9, b2 = 7
Độ dài các bán kính qua tiêu của M là:
Bài 3.9 trang 52 Chuyên đề Toán 10:
Trong mặt phẳng toạ độ, hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:
a) (H) có nửa trục thực bằng 4, tiêu cự bằng 10;
b) (H) có tiêu cự bằng , một đường tiệm cận là ;
c) (H) có tâm sai , và đi qua điểm .
Lời giải:
a)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có nửa trục thực bằng 4 a = 4.
+) Hypebol có tiêu cự bằng 10 2c = 10 c = 5 b2 = c2 – a2 = 52 – 42 = 9.
Vậy phương trình chính tắc của hypebol đã cho là hay
b)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tiêu cự bằng
+) Hypebol có một đường tiệm cận là
Vậy phương trình chính tắc của hypebol đã cho là hay
c)
Gọi phương trình chính tắc của hypebol đã cho là (a > 0, b > 0).
+) Hypebol có tâm sai
+) Hypebol đi qua điểm (2).
Thế (1) vào (2) ta được:
Vậy phương trình chính tắc của hypebol đã cho là
Bài tập 3.10 trang 52 Chuyên đề Toán 10:
Một hypebol mà độ dài trục thực bằng độ dài trục ảo được gọi là hypebol vuông. Tìm tâm sai và phương trình hai đường tiệm cận của hypebol vuông.
Lời giải:
Giả sử phương trình chính tắc của một hypebol vuông là (a > 0, b > 0).
Vì độ dài trục thực bằng độ dài trục ảo nên a = b
Tâm sai e =
Phương trình hai đường tiệm cận là: và
Bài 3.11 trang 52 Chuyên đề Toán 10:
Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.
Lời giải:
Xét hypebol có phương trình chính tắc là (a > 0, b > 0).
Hai đường tiệm cận của hypebol là: d1 : hay bx + ay = 0 và d2 : hay bx – ay = 0.
Xét điểm M(x; y) bất kì thuộc hypebol. Ta có:
d(M, d1) = , d(M, d2) = .
d(M, d1).d(M, d2) = (*).
Mặt khác, vì M(x; y) thuộc hypebol nên
Thay vào (*) ta được: d(M, d1).d(M, d2) = (không đổi).
Vậy tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.
Bài 3.12 trang 52 Chuyên đề Toán 10:
Bốn trạm phát tín hiệu vô tuyến có vị trí A, B, C, D theo thứ tự đó thẳng hàng và cách đều với khoảng cách 200 km (H.3.16). Tại một thời điểm, bốn trạm cùng phát tín hiệu với vận tốc 292000 km/s. Một tàu thuỷ nhận được tín hiệu từ trạm C trước 0,0005 s so với tín hiệu từ trạm B và nhận được tín hiệu từ trạm D sớm 0,001 s so với tín hiệu từ trạm A.
a) Tính hiệu các khoảng cách từ tàu đến các trạm B, C.
b) Tính hiệu các khoảng cách từ tàu đến các trạm A, D.
c) Chọn hệ trục tọa độ Oxy như trong Hình 3.16 (1 đơn vị trên mặt phẳng toạ độ ứng với 100 km trên thực tế). Hãy lập phương trình chính tắc của hai hypebol đi qua vị trí M của tàu. Từ đó, tính toạ độ của M (các số được làm tròn đến hàng đơn vị).
d) Tính các khoảng cách từ tàu đến các trạm B, C (đáp số được làm tròn đến hàng đơn vị, tính theo đơn vị km).
Lời giải:
Gọi vận tốc phát tín hiệu là v (theo đề bài v = 292000 km/s);
tA, tB, tC, tD lần lượt là thời gian để tàu nhận được tín hiệu từ các trạm A, B, C, D;
M là vị trí của tàu thuỷ.
a) Hiệu các khoảng cách từ tàu đến các trạm B, C là:
MB – MC = v.tB – v.tC = v(tB – tC) = 292000 . 0,0005 = 146 (km).
b) Hiệu các khoảng cách từ tàu đến các trạm A, D là:
MA – MD = v.tD – v.tA = v(tD – tA) = 292000 . 0,001 = 292 (km).
c)
+) Gọi phương trình chính tắc của hypebol (H1) nhận B, C làm tiêu điểm là (a1 > 0, b1 > 0).
Vì MB – MC = 146 nên 2a1 = 146 a1 = 73 = 5329.
Ta thấy B(–100; 0) và C(100; 0) là hai tiêu điểm của hypebol nên c1 = 100
= 1002 – 732 = 4671.
Vậy phương trình chính tắc của hypebol (H1) là
+) Gọi phương trình chính tắc của hypebol (H2) nhận A, D làm tiêu điểm là (a2 > 0, b2 > 0).
Vì MA – MD = 29,2 nên 2a2 = 292 a2 = 146
Ta thấy A(–300; 0) và D(300; 0) là hai tiêu điểm của hypebol nên c2 = 300
= 3002 – 1462 = 68684.
Vậy phương trình chính tắc của hypebol (H2) là
Gọi toạ độ của M là (x; y). Vì M thuộc cả (H1) và (H2) nên ta có:
(vì theo hình vẽ x, y > 0)
d) MB = ≈ 299 (km);
MC = ≈ 153 (km).
Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:
Giải bài tập trang 47, 48 Chuyên đề Toán 10 Bài 6
Giải bài tập trang 49, 50 Chuyên đề Toán 10 Bài 6
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Kết nối tri thức
- Tác giả tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Soạn văn lớp 10 (ngắn nhất) – Kết nối tri thức
- Tóm tắt tác phẩm Ngữ văn lớp 10 - KNTT
- Bố cục tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Kết nối tri thức
- Văn mẫu lớp 10 – Kết nối tri thức
- Giải Chuyên đề học tập Ngữ văn 10 – Kết nối tri thức
- Giải sgk Tiếng Anh 10 Global Success – Kết nối tri thức
- Giải sbt Tiếng Anh 10 Global Success – Kết nối tri thức
- Ngữ pháp Tiếng Anh 10 Global success
- Bài tập Tiếng Anh 10 Global success theo Unit có đáp án
- Trọn bộ Từ vựng Tiếng Anh 10 Global success đầy đủ nhất
- Giải sgk Vật lí 10 – Kết nối tri thức
- Giải sbt Vật lí 10 – Kết nối tri thức
- Giải Chuyên đề Vật lí 10 – Kết nối tri thức
- Lý thuyết Vật lí 10 – Kết nối tri thức
- Chuyên đề dạy thêm Vật lí 10 cả 3 sách (2024 có đáp án)
- Giải sgk Hóa học 10 – Kết nối tri thức
- Lý thuyết Hóa học 10 – Kết nối tri thức
- Giải sbt Hóa học 10 – Kết nối tri thức
- Giải Chuyên đề Hóa học 10 – Kết nối tri thức
- Chuyên đề dạy thêm Hóa 10 cả 3 sách (2024 có đáp án)
- Giải sgk Sinh học 10 – Kết nối tri thức
- Giải sbt Sinh học 10 – Kết nối tri thức
- Lý thuyết Sinh học 10 – Kết nối tri thức
- Giải Chuyên đề Sinh học 10 – Kết nối tri thức
- Giải sgk Lịch sử 10 – Kết nối tri thức
- Giải sbt Lịch sử 10 – Kết nối tri thức
- Giải Chuyên đề Lịch sử 10 – Kết nối tri thức
- Lý thuyết Lịch sử 10 - Kết nối tri thức
- Giải sgk Địa lí 10 – Kết nối tri thức
- Lý thuyết Địa Lí 10 – Kết nối tri thức
- Giải sbt Địa lí 10 – Kết nối tri thức
- Giải Chuyên đề Địa lí 10 – Kết nối tri thức
- Giải sgk Công nghệ 10 – Kết nối tri thức
- Lý thuyết Công nghệ 10 – Kết nối tri thức
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Kết nối tri thức
- Giải Chuyên đề Kinh tế và pháp luật 10 – Kết nối tri thức
- Lý thuyết KTPL 10 – Kết nối tri thức
- Giải sgk Giáo dục quốc phòng - an ninh 10 – Kết nối tri thức
- Lý thuyết Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sbt Giáo dục quốc phòng 10 – Kết nối tri thức
- Giải sgk Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sbt Hoạt động trải nghiệm 10 – Kết nối tri thức
- Giải sgk Tin học 10 – Kết nối tri thức
- Lý thuyết Tin học 10 – Kết nối tri thức
- Giải sbt Tin học 10 – Kết nối tri thức
- Giải Chuyên đề Tin học 10 – Kết nối tri thức
- Giải sgk Giáo dục thể chất 10 – Kết nối tri thức