Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức

Với Giải bài tập trang 52 Chuyên đề Toán 10 trong Bài 6: Hypebol sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 52.

1 1,094 19/07/2022


Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức

Luyện tập 4 trang 52 Chuyên đề Toán 10: Trong mặt phẳng toạ độ Oxy, hypebol (H) có phương trình chính tắc, có tâm sai e = 2 và một đường chuẩn là x = 8. Lập phương trình chính tắc của (H).

Lời giải:

Gọi phương trình chính tắc của hypebol đã cho là x2a2y2b2=1 (a > 0, b > 0).

+) Hypebol có tâm sai Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1) (1).

+) Hypebol có một đường chuẩn là

Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

Vậy phương trình chính tắc của hypebol đã cho là x2256y2768=1.

Vận dụng trang 52 Chuyên đề Toán 10:

Một sao chổi đi qua hệ Mặt Trời theo quỹ đạo là một nhánh hypebol nhận tâm Mặt Trời là một tiêu điểm, khoảng cách gần nhất từ sao chổi này đến tâm Mặt Trời là 3.108 km và tâm sai của quỹ đạo hypebol là 3,6 (H.3.15).

Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

Hãy lập phương trình chính tắc của hypebol chứa quỹ đạo, với 1 đơn vị đo trên mặt phẳng toạ độ ứng với 108 km trên thực tế.

Lời giải:

Chọn hệ trục toạ độ sao cho tâm Mặt Trời trùng với tiêu điểm F1 của hypebol.

Gọi phương trình chính tắc của hypebol là x2a2y2b2=1 (a > 0, b > 0).

Theo đề bài, ta có:

– Khoảng cách gần nhất từ sao chổi này đến tâm Mặt Trời là 3.108 km  c – a = 3.

– Tâm sai của quỹ đạo hypebol là 3,6

Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

Vậy phương trình chính tắc của hypebol đã cho là x260,84y255,8=1.

Bài 3.7 trang 52 Chuyên đề Toán 10:

Trong mặt phẳng toạ độ, cho hypebol có phương trình chính tắc x29y24=1. Xác định toạ độ các đỉnh, độ dài các trục, tâm sai và phương trình các đường chuẩn của hypebol.

Lời giải:

Có a2 = 9, b2 = 4  a = 3, b = 2, c = a2+b2=9+4=13.

Toạ độ các đỉnh của hypebol là A1(–3; 0), A2(3; 0).

Độ dài trục thực là 2a = 6, độ dài trục ảo là 2b = 4.

Tâm sai e = ca=133.

Phương trình các đường chuẩn của hypebol là: Δ1:x=a2cx=913, Δ2:x=a2cx=913.

Bài 3.8 trang 52 Chuyên đề Toán 10:

Trong mặt phẳng toạ độ, cho hypebol có phương trình chính tắc x29y27=1. Tính bán kính qua tiêu của một điểm M thuộc hypebol và có hoành độ bằng 12.

Lời giải:

Có a2 = 9, b2 = 7 a=3,c=a2+b2=9+7=4.

Độ dài các bán kính qua tiêu của M là:

Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

Bài 3.9 trang 52 Chuyên đề Toán 10:

Trong mặt phẳng toạ độ, hypebol (H) có phương trình chính tắc. Lập phương trình chính tắc của (H) trong mỗi trường hợp sau:

a) (H) có nửa trục thực bằng 4, tiêu cự bằng 10;

b) (H) có tiêu cự bằng 213, một đường tiệm cận là y=23x;

c) (H) có tâm sai e=5, và đi qua điểm (10;6).

Lời giải:

a)

Gọi phương trình chính tắc của hypebol đã cho là x2a2y2b2=1 (a > 0, b > 0).

+) Hypebol có nửa trục thực bằng 4  a = 4.

+) Hypebol có tiêu cự bằng 10  2c = 10  c = 5  b2 = c2 – a2 = 52 – 42 = 9.

Vậy phương trình chính tắc của hypebol đã cho là hay x216y29=1.

b)

Gọi phương trình chính tắc của hypebol đã cho là x2a2y2b2=1 (a > 0, b > 0).

+) Hypebol có tiêu cự bằng Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

+) Hypebol có một đường tiệm cận là y=23x ba=23

b2=a3b24=a29=b2+a24+9=c213=13213=1 b2=4a2=9.

Vậy phương trình chính tắc của hypebol đã cho là hay x29y24=1.

c)

Gọi phương trình chính tắc của hypebol đã cho là x2a2y2b2=1 (a > 0, b > 0).

+) Hypebol có tâm sai

 Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

+) Hypebol đi qua điểm (10;6)  102a262b2=110a236b2=1 (2).

Thế (1) vào (2) ta được:

10a2364a2=110a29a2=11a2=1a2=1b2=4.

Vậy phương trình chính tắc của hypebol đã cho là x21y24=1.

Bài tập 3.10 trang 52 Chuyên đề Toán 10:

Một hypebol mà độ dài trục thực bằng độ dài trục ảo được gọi là hypebol vuông. Tìm tâm sai và phương trình hai đường tiệm cận của hypebol vuông.

Lời giải:

Giả sử phương trình chính tắc của một hypebol vuông là x2a2y2b2=1 (a > 0, b > 0).

Vì độ dài trục thực bằng độ dài trục ảo nên a = b c=a2+b2=a2+a2=a2

 Tâm sai e = ca=a2a=2.

Phương trình hai đường tiệm cận là: y=baxy=x y=baxy=x.

Bài 3.11 trang 52 Chuyên đề Toán 10:

Chứng minh rằng tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Lời giải:

Xét hypebol có phương trình chính tắc là x2a2y2b2=1 (a > 0, b > 0).

Hai đường tiệm cận của hypebol là: d1 : y=bax hay bx + ay = 0 và d2 : y=bax hay bx – ay = 0.

Xét điểm M(x; y) bất kì thuộc hypebol. Ta có:

d(M, d1) = bx+ayb2+a2, d(M, d2) = bxayb2+a2.

 d(M, d1).d(M, d2) = bx+ayb2+a2.bxayb2+a2=bx2ay2a2+b2 (*).

Mặt khác, vì M(x; y) thuộc hypebol nên

x2a2y2b2=1x2b2a2y2a2b2=1

bx2ay2=a2b2

Thay vào (*) ta được: d(M, d1).d(M, d2) = a2b2a2+b2=a2b2a2+b2 (không đổi).

Vậy tích các khoảng cách từ một điểm bất kì thuộc hypebol đến hai đường tiệm cận của nó là một số không đổi.

Bài 3.12 trang 52 Chuyên đề Toán 10:

Bốn trạm phát tín hiệu vô tuyến có vị trí A, B, C, D theo thứ tự đó thẳng hàng và cách đều với khoảng cách 200 km (H.3.16). Tại một thời điểm, bốn trạm cùng phát tín hiệu với vận tốc 292000 km/s. Một tàu thuỷ nhận được tín hiệu từ trạm C trước 0,0005 s so với tín hiệu từ trạm B và nhận được tín hiệu từ trạm D sớm 0,001 s so với tín hiệu từ trạm A.

Chuyên đề Toán 10 Bài 6: Hypebol - Kết nối tri thức (ảnh 1)

a) Tính hiệu các khoảng cách từ tàu đến các trạm B, C.

b) Tính hiệu các khoảng cách từ tàu đến các trạm A, D.

c) Chọn hệ trục tọa độ Oxy như trong Hình 3.16 (1 đơn vị trên mặt phẳng toạ độ ứng với 100 km trên thực tế). Hãy lập phương trình chính tắc của hai hypebol đi qua vị trí M của tàu. Từ đó, tính toạ độ của M (các số được làm tròn đến hàng đơn vị).

d) Tính các khoảng cách từ tàu đến các trạm B, C (đáp số được làm tròn đến hàng đơn vị, tính theo đơn vị km).

Lời giải:

Gọi vận tốc phát tín hiệu là v (theo đề bài v = 292000 km/s);

tA, tB, tC, tD lần lượt là thời gian để tàu nhận được tín hiệu từ các trạm A, B, C, D;

M là vị trí của tàu thuỷ.

a) Hiệu các khoảng cách từ tàu đến các trạm B, C là:

MB – MC = v.tB – v.tC = v(tB – tC) = 292000 . 0,0005 = 146 (km).

b) Hiệu các khoảng cách từ tàu đến các trạm A, D là:

MA – MD = v.tD – v.tA = v(tD – tA) = 292000 . 0,001 = 292 (km).

c)

+) Gọi phương trình chính tắc của hypebol (H1) nhận B, C làm tiêu điểm là x2a12y2b12=1 (a1 > 0, b1 > 0).

Vì MB – MC = 146 nên 2a1 = 146  a1 = 73a12 = 5329.

Ta thấy B(–100; 0) và C(100; 0) là hai tiêu điểm của hypebol nên c1 = 100

 b12=c12a12 = 1002 – 732 = 4671.

Vậy phương trình chính tắc của hypebol (H1) là x25329y24671=1.

+) Gọi phương trình chính tắc của hypebol (H2) nhận A, D làm tiêu điểm là x2a22y2b22=1 (a2 > 0, b2 > 0).

Vì MA – MD = 29,2 nên 2a2 = 292  a2 = 146

Ta thấy A(–300; 0) và D(300; 0) là hai tiêu điểm của hypebol nên c2 = 300

 b22=c22a22 = 3002 – 1462 = 68684.

Vậy phương trình chính tắc của hypebol (H2) là x221316y268684=1.

Gọi toạ độ của M là (x; y). Vì M thuộc cả (H1) và (H2) nên ta có:

x25329y24671=1x221316y268684=1x2=34112527712500y2=24061722312500x165y139 (vì theo hình vẽ x, y > 0)

d) MB = 1651002+13902≈ 299 (km);

MC = 1651002+13902≈ 153 (km).

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải bài tập trang 47, 48 Chuyên đề Toán 10 Bài 6

Giải bài tập trang 49, 50 Chuyên đề Toán 10 Bài 6

 

1 1,094 19/07/2022


Xem thêm các chương trình khác: