Giải bài tập trang 47, 48 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức

Với Giải bài tập trang 47, 48 Chuyên đề Toán 10 trong Bài 6: Hypebol sách Chuyên đề Toán lớp 10 Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Chuyên đề Toán 10 trang 47, 48.

1 1,073 19/07/2022


Giải bài tập trang 47, 48 Chuyên đề Toán 10 Bài 6 - Kết nối tri thức

HĐ1 trang 47 Chuyên đề Toán 10:

Trong mặt phẳng tọa độ, cho hypebol có phương trình chính tắc x2a2y2b2=1.

a) Hãy giải thích vì sao nếu điểm M(x0; y0) thuộc hypebol thì các điểm có toạ độ (x0; –y0), (–x0; y0), (–x0; –y0) cũng thuộc hypebol (H.3.12).

b) Tìm toạ độ các giao điểm của hypebol với trục hoành. Hypebol có cắt trục tung hay không? Vì sao?

c) Với điểm M(x0; y0) thuộc hypebol, hãy so sánh |x0| với a.

Lời giải:

a) Nếu điểm M(x0; y0) thuộc hypebol thì ta có: x02a2y02b2=1.

Ta có: x02a2y02b2=x02a2y02b2=x02a2y02b2=x02a2y02b2=1 nên các điểm có toạ độ (x0; –y0), (–x0; y0), (–x0; –y0) cũng thuộc elip.

b)

+) Gọi A là giao điểm của hypebol với trục hoành.

Vì A thuộc trục Ox nên toạ độ của A có dạng (xA; 0)

Mà A thuộc hypebol nên

xA2a202b2=1xA2=a2xA=axA=a.

Do đó hypebol cắt trục Ox tại hai điểm A1(–a; 0) và A2(a; 0).

+) Giả sử hypebol cắt trục tung tại B.

Vì B thuộc trục Oy nên toạ độ của B có dạng (0; yB).

Mà B thuộc hypebol nên 02a2yB2b2=1yB2b2=1 (vô lí).

Vậy hypebol không cắt trục tung.

c) M(x0; y0) thuộc hypebol nên ta có: x02a2y02b2=1.

y02b20 nên x02a21x02a2|x0|a.

Luyện tập 1 trang 48 Chuyên đề Toán 10: Cho hypebol x264y236=1.

a) Tìm tiêu cự và độ dài các trục.

b) Tìm các đỉnh và các đường tiệm cận.

Lời giải:

a) Có a2 = 64, b2 = 36

a=8,b=6c=a2+b2=64+36=10.

Do đó, tiêu cự của hypebol là 2c = 20, độ dài trục thực là 2a = 16, độ dài trục ảo là 2b = 12.

b) Các đỉnh của hypebol là A1(–8; 0), A2(8; 0).

Hai đường tiệm cận của hypebol là y=bax=68x=34x và y=bax=68x=34x. 

Xem thêm lời giải bài tập Chuyên đề Toán lớp 10 Kết nối tri thức với cuộc sống hay, chi tiết khác:

Giải bài tập trang 49, 50 Chuyên đề Toán 10 Bài 6

Giải bài tập trang 52 Chuyên đề Toán 10 Bài 6

1 1,073 19/07/2022


Xem thêm các chương trình khác: