Cho hai đoạn thẳng AB và CD cắt nhau tại O. Tìm điểm M sao cho: MA + MB + MC + MD nhỏ nhất

Lời giải Bài 5 trang 65 SBT Toán 7 Tập 2 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 7.

1 257 01/01/2023


Giải SBT Toán 7 Chân trời sáng tạo Bài tập cuối chương 8

Bài 5 trang 65 SBT Toán 7 Tập 2: Cho hai đoạn thẳng AB và CD cắt nhau tại O. Tìm điểm M sao cho: MA + MB + MC + MD nhỏ nhất.

Lời giải

Sách bài tập Toán 7 (Kết nối tri thức) Bài tập cuối chương 8 (ảnh 1)

Xét ABM có: MA + MB AB (bất đẳng thức trong tam giác)

Xét CDM có: MC + MD CD (bất đẳng thức trong tam giác)

Suy ra MA + MB + MC + MD AB + CD.

Nên MA + MB + MC + MD nhỏ nhất khi và chỉ khi:

MA + MB + MC + MD = AB + CD

Khi đó MA + MB = AB và MC + MD = CD

Điều này chỉ xảy ra khi M trùng với điểm O.

Vậy khi điểm M là giao điểm của AB và CD thì MA + MB + MC + MD nhỏ nhất.

1 257 01/01/2023


Xem thêm các chương trình khác: