Lý thuyết Tính đơn điệu của hàm số – Toán lớp 12 Cánh diều
Với lý thuyết Toán lớp 12 Bài 1: Tính đơn điệu của hàm số chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 12.
Lý thuyết Toán 12 Bài 1: Tính đơn điệu của hàm số - Cánh diều
A. Lý thuyết Tính đơn điệu của hàm số
1. Tính đơn điệu của hàm số
* Tính đơn điệu và dấu của đạo hàm
Cho hàm số y = f(x) có đạo hàm trên tập K ⊂ ℝ, trong đó K là một khoảng, đoạn hoặc nửa khoảng.
- Nếu f'(x) > 0 với mọi x thuộc K thì hàm số f(x) đồng biến trên K.
- Nếu f'(x) < 0 với mọi x thuộc K thì hàm số f(x) nghịch biến trên K.
Chú ý: Nếu hàm số y = f(x) đồng biến trên tập K hoặc nghịch biến trên tập K thì hàm số y = f(x) còn được gọi là đơn điệu trên K ⊂ ℝ.
Ví dụ 1. Xét dấu y' rồi tìm khoảng đồng biến, nghịch biến của hàm số
y = x3 – 2x2 + x + 1.
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = 3x2 – 4x + 1;
y' = 0 ⇔ 3x2 – 4x + 1 = 0 ⇔ hoặc x = 1.
Ta có bảng xét dấu của y' như sau:
Vậy hàm số đồng biến trên mỗi khoảng và (1; + ∞); nghịch biến trên khoảng .
* Cho hàm số y = f(x) có đạo hàm trên tập K ⊂ ℝ trong đó K là một khoảng, đoạn hoặc nửa khoảng. Nếu f'(x) ≥ 0 (hoặc f'(x) ≤ 0) với mọi x thuộc K và f'(x) = 0 chỉ tại một số hữu hạn điểm của K thì hàm số f(x) đồng biến (hoặc nghịch biến) trên K.
Ví dụ 2. Tìm các khoảng đơn điệu của hàm số y = x5 –x3 + x + 4.
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = x4 – 2x2 + 1 = (x2 – 1)2 = (x – 1)2 ∙ (x + 1)2;
y' ≥ 0 với mọi x ∈ ℝ và y' = 0 ⇔ x = – 1 hoặc x = 1.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên khoảng (– ∞; + ∞).
* Các bước xét tính đồng biến, nghịch biến của hàm số y = f(x)
Bước 1. Tìm tập xác định của hàm số y = f(x).
Bước 2. Tính đạo hàm f'(x). Tìm các điểm xi (i = 1, 2, …, n) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.
Ví dụ 3. Tìm các khoảng đơn điệu của hàm số
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ \
Ta có y' > 0 với mọi
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng và
2. Điểm cực trị, giá trị cực trị của hàm số
* Định nghĩa
Cho hàm số y = f(x) liên tục trên tập K ⊂ ℝ, trong đó K là một khoảng, đoạn hoặc nửa khoảng và x0 ∈ K, x1 ∈ K.
- x0 được gọi là một điểm cực đại của hàm số đã cho nếu tồn tại một khoảng (a; b) chứa điểm x0 sao cho (a; b) ⊂ K và f(x) < f(x0) với mọi x ∈ (a; b) và x ≠ x0.
Khi đó, f(x0) được gọi là giá trị cực đại của hàm số đã cho, kí hiệu là fCĐ.
- x1 được gọi là một điểm cực tiểu của hàm số đã cho nếu tồn tại một khoảng (c; d) chứa điểm x1 sao cho (c; d) ⊂ K và f(x) > f(x1) với mọi x ∈ (c; d) và x ≠ x1.
Khi đó, f(x1) được gọi là giá trị cực tiểu của hàm số đã cho, kí hiệu là fCT.
- Điểm cực đại và điểm cực tiểu được gọi chung là điểm cực trị. Giá trị cực đại và giá trị cực tiểu được gọi chung là giá trị cực trị (hay cực trị).
Chú ý: Nếu x0 là một điểm cực trị của hàm số y = f(x) thì người ta nói rằng hàm số y = f(x) đạt cực trị tại điểm x0. Khi đó, điểm M(x0; f(x0)) được gọi là điểm cực trị của đồ thị hàm số y = f(x).
Ví dụ 4. Cho đồ thị hàm số y = f(x) như hình dưới đây.
Hãy chỉ ra các điểm cực trị của hàm số đó.
Hướng dẫn giải
- Xét khoảng chứa điểm x = – 1. Quan sát đồ thị hàm số y = f(x) ở hình trên, ta thấy f(x) > f(– 1) với mọi x ∈ và x ≠ – 1.
Do vậy x = – 1 là một điểm cực tiểu của hàm số y = f(x).
- Xét khoảng (– 1; 1) chứa điểm x = 0. Quan sát đồ thị hàm số y = f(x) ở hình trên, ta thấy f(x) < f(0) với mọi x ∈ (– 1; 1) và x ≠ 0.
Do vậy x = 0 là điểm cực đại của hàm số y = f(x).
- Xét khoảng chứa điểm x = 1. Quan sát đồ thị hàm số y = f(x) ở hình trên, ta thấy f(x) > f(1) với mọi x ∈ và x ≠ 1.
Do vậy x = 1 là một điểm cực tiểu của hàm số y = f(x).
* Mối liên hệ giữa đạo hàm và cực trị
Giả sử hàm số y = f(x) liên tục trên khoảng (a; b) chứa điểm x0 và có đạo hàm trên các khoảng (a; x0) và (x0; b). Khi đó
- Nếu f'(x) < 0 với mọi x ∈ (a; x0) và f'(x) > 0 với mọi x ∈ (x0; b) thì hàm số f(x) đạt cực tiểu tại điểm x0.
- Nếu f'(x) > 0 với mọi x ∈ (a; x0) và f'(x) < 0 với mọi x ∈ (x0; b) thì hàm số f(x) đạt cực đại tại điểm x0.
Ví dụ 5. Tìm điểm cực trị của hàm số y = x4 – 2x2 – 3.
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = 4x3 – 4x;
y' = 0 ⇔ 4x3 – 4x = 0 ⇔ x = – 1 hoặc x = 0 hoặc x = 1.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực đại tại điểm x = 0 và đạt cực tiểu tại các điểm x = – 1, x = 1.
* Các bước tìm điểm cực trị của hàm số f(x)
Bước 1. Tìm tập xác định của hàm số f(x):
Bước 2. Tính đạo hàm f'(x). Tìm các điểm xi (i = 1, 2, …, n) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
Bước 3. Sắp xếp các điểm xi theo thứ tự tăng dần và lập bảng biến thiên.
Bước 4. Căn cứ vào bảng biến thiên, nêu kết luận về các điểm cực trị của hàm số.
Ví dụ 6. Tìm điểm cực trị (nếu có) của mỗi hàm số sau:
a) y = – x3 + 3x2 + 4;
b)
Hướng dẫn giải
a) y = – x3 + 3x2 + 4
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = – 3x2 + 6x;
y' = 0 ⇔ – 3x2 + 6x = 0 ⇔ x = 0 hoặc x = 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực đại tại điểm x = 2 và đạt cực tiểu tại điểm x = 0.
b)
Hàm số đã cho có tập xác định là ℝ \ {2}.
Ta có y' < 0 với mọi x ≠ 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số không có điểm cực trị.
B. Bài tập Tính đơn điệu của hàm số
Bài 1. Cho hàm số y = f(x) có bảng biến thiên như hình vẽ dưới đây
Mệnh đề nào sau đây sai?
A. Hàm số có hai điểm cực trị.
B. Hàm số có hai cực trị.
C. Cực đại bằng – 1.
D. Cực tiểu bằng – 2.
Hướng dẫn giải
Đáp án đúng là: C
Từ bảng biến thiên, ta thấy hàm số y = f(x) có đạt cực tiểu tại điểm x = 3, yCT = – 2; đạt cực đại tại điểm x = – 1, yCĐ = 2.
Vậy các đáp án A, B, D đúng và đáp án C sai.
Bài 2. Tìm các khoảng đơn điệu của mỗi hàm số sau:
a) y = x3 + 3x2 – 9x + 15;
b) y = – x4 + 2x2 – 4;
c)
d)
Hướng dẫn giải
a) y = x3 + 3x2 – 9x + 15
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = 3x2 + 6x – 9;
y' = 0 ⇔ 3x2 + 6x – 9 = 0 ⇔ x = – 3 hoặc x = 1.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 3) và (1; + ∞); nghịch biến trên mỗi khoảng (– 3; 1).
b) y = – x4 + 2x2 – 4
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = – 4x3 + 4x;
y' = 0 ⇔– 4x3 + 4x = 0 ⇔ x = – 1 hoặc x = 0 hoặc x = 1.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 1) và (0; 1); nghịch biến trên mỗi khoảng (– 1; 0) và (1; + ∞).
c)
Hàm số đã cho có tập xác định là ℝ \ {– 2}.
Ta có ; y' > 0 với mọi x ≠ – 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 2) và (– 2; + ∞).
d)
Hàm số đã cho có tập xác định là ℝ \ {0}.
Ta có
y' = 0 ⇔ ⇔ x = – 2 hoặc x = 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đồng biến trên mỗi khoảng (– ∞; – 2) và (2; + ∞); nghịch biến trên mỗi khoảng (– 2; 0) và (0; 2).
Bài 3. Tìm điểm cực trị của mỗi hàm số sau:
a) y = x3 – 3x2 – 9x + 1;
b) y = – x4 + 8x2 – 7;
c)
Hướng dẫn giải
a) y = x3 – 3x2 – 9x + 1
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = 3x2 – 6x – 9;
y' = 0 ⇔3x2 – 6x – 9 = 0 ⇔ x = – 1 hoặc x = 3.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực đại tại điểm x = – 1; đạt cực tiểu tại điểm x = 3.
b) y = – x4 + 8x2 – 7
Hàm số đã cho có tập xác định là ℝ.
Ta có y' = – 4x3 + 16x;
y' = 0 ⇔– 4x3 + 16x = 0 ⇔ x = – 2 hoặc x = 0 hoặc x = 2.
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực đại tại điểm x = – 2 và x = 2; đạt cực tiểu tại điểm x = 0.
c)
Hàm số đã cho có tập xác định là ℝ\{1}.
Ta có
y' = 0 ⇔ hoặc
Bảng biến thiên của hàm số như sau:
Vậy hàm số đạt cực đại tại điểm ; đạt cực tiểu tại
Bài 4. Một vật được phóng thẳng đứng lên trên từ độ cao 3 m với vận tốc ban đầu là 39,2 m/s. Trong Vật lí, ta biết rằng khi bỏ qua sức cản của không khí thì độ cao h (mét) của vật sau t (giây) được cho bởi công thức
h(t) = 3 + 39,2t – 4,9t2.
Hỏi tại thời điểm nào thì vật đạt độ cao lớn nhất?
Hướng dẫn giải
Xét hàm số h(t) = 3 + 39,2t – 4,9t2.
Tập xác định của hàm số là [0; + ∞).
Ta có h'(t) = 39,2 − 9,8t;
h'(t) = 0 t = 4.
Bảng biến thiên của hàm số như sau:
Căn cứ vào bảng biến thiên ta có hàm số h(t) đạt cực đại tại t = 4, h(t)CĐ = 81,4.
Vậy tại thời điểm t = 4 thì vật đạt độ cao lớn nhất là 81,4 m.
Bài 5. Cho hàm số y = f(x) có bảng biến thiên như sau:
Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?
A. (– ∞; 0).
B. (0; 2).
C. (– 2; 0).
D. (2; + ∞).
Hướng dẫn giải
Đáp án đúng là: B
Dựa vào bảng biến thiên, ta thấy y' > 0 với mọi x ∈ (0; 2) nên hàm số đồng biến trên khoảng (0; 2).
Xem thêm các chương trình khác:
- Soạn văn 12 Cánh diều (hay nhất)
- Văn mẫu 12 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 12 – Cánh diều
- Tác giả tác phẩm Ngữ văn 12 - Cánh diều
- Bố cục tác phẩm Ngữ văn 12 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn 12 – Cánh diều
- Giải sgk Tiếng Anh 12 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh lớp 12 ilearn Smart World đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh lớp 12 ilearn Smart World đầy đủ nhất
- Giải sbt Tiếng Anh 12 – iLearn Smart World
- Giải sgk Vật lí 12 – Cánh diều
- Giải Chuyên đề học tập Vật lí 12 – Cánh diều
- Lý thuyết Vật lí 12 – Cánh diều
- Giải sbt Vật lí 12 – Cánh diều
- Giải sgk Hóa học 12 – Cánh diều
- Giải Chuyên đề học tập Hóa 12 – Cánh diều
- Lý thuyết Hóa 12 – Cánh diều
- Giải sbt Hóa 12 – Cánh diều
- Giải sgk Sinh học 12 – Cánh diều
- Giải Chuyên đề học tập Sinh học 12 – Cánh diều
- Lý thuyết Sinh học 12 – Cánh diều
- Giải sbt Sinh học 12 – Cánh diều
- Giải sgk Lịch sử 12 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 12 – Cánh diều
- Giải sbt Lịch sử 12 – Cánh diều
- Giải sgk Địa lí 12 – Cánh diều
- Giải Chuyên đề học tập Địa lí 12 – Cánh diều
- Giải sbt Địa lí 12 – Cánh diều
- Giải sgk Tin học 12 – Cánh diều
- Giải Chuyên đề học tập Tin học 12 – Cánh diều
- Giải sbt Tin học 12 – Cánh diều
- Lý thuyết Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 – Cánh diều
- Giải sgk Kinh tế pháp luật 12 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Cánh diều
- Giải sbt Kinh tế pháp luật 12 – Cánh diều
- Giải sgk Giáo dục quốc phòng 12 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 – Cánh diều