Lý thuyết Đường tiệm cận của đồ thị hàm số – Toán lớp 12 Cánh diều
Với lý thuyết Toán lớp 12 Bài 3: Đường tiệm cận của đồ thị hàm số chi tiết, ngắn gọn và bài tập tự luyện có lời giải chi tiết sách Cánh diều sẽ giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 12.
Lý thuyết Toán 12 Bài 3: Đường tiệm cận của đồ thị hàm số - Cánh diều
A. Lý thuyết Đường tiệm cận của đồ thị hàm số
1. Đường tiệm cận ngang
Đường thẳng y = y0 được gọi là đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số y = f(x) nếu: hoặc
Nhận xét: Giả sử đường thẳng y = y0 là tiệm cận ngang của đồ thị hàm số y = f(x). Lấy điểm M(x; y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng y = y0. Khi đó, độ dài MH tiến tới 0 khi x → + ∞ hay x → – ∞.
Ví dụ 1. Tìm tiệm cận ngang của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ \ {1}.
Ta có:
Vậy đường thẳng y = 5 là tiệm cận ngang của đồ thị hàm số đã cho.
2. Đường tiệm cận đứng
Đường thẳng x = x0 được gọi là đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số y = f(x) nếu ít nhất một trong các điều kiện sau được thỏa mãn:
Nhận xét: Giả sử đường thẳng x = x0 là tiệm cận đứng của đồ thị hàm số y = f(x). Lấy điểm M(x; y) thuộc đồ thị hàm số. Gọi MH là khoảng cách từ điểm M đến đường thẳng x = x0. Khi đó, độ dài MH tiến tới 0 khi x → x0+ hay x → x0–.
Ví dụ 2. Tìm tiệm cận đứng của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Hàm số đã cho có tập xác định là ℝ \ {0}.
Ta có:
Vậy đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.
3. Đường tiệm cận xiên
Đường thẳng y = ax + b (a ≠ 0) được gọi là đường tiệm cận xiên (hay tiệm cận xiên) của đồ thị hàm số y = f(x) nếu:
hoặc
Nhận xét: Giả sử đường thẳng y = ax + b (a ≠ 0) là tiệm cận xiên của đồ thị hàm số y = f(x). Lấy điểm M thuộc đồ thị hàm số y = f(x) và điểm N thuộc đường thẳng y = ax + b có cùng hoành độ x. Khi đó, độ dài MN tiến tới 0 khi x → + ∞ hay x → – ∞.
Ví dụ 3. Cho hàm số y = f(x) = Chứng minh rằng đường thẳng y = x là tiệm cận xiên của đồ thị hàm số f(x).
Hướng dẫn giải
Do nên đường thẳng y = x là tiệm cận xiên của đồ thị hàm số đã cho.
Chú ý: Để xác định hệ số a, b của đường tiệm cận xiên y = ax + b của đồ thị hàm số y = f(x), ta có thể áp dụng công thức sau:
và hoặc và
(Khi a = 0 thì ta có tiệm cận ngang y = b).
Ví dụ 4. Tìm tiệm cận xiên của đồ thị hàm số y = f(x) =
Hướng dẫn giải
Ta có và
Tương tự
Vậy đường thẳng y = x – 2 là tiệm cận xiên của đồ thị hàm số đã cho.
B. Bài tập Đường tiệm cận của đồ thị hàm số
Bài 1. Tiệm cận xiên của đồ thị hàm số là
A. y = x – 1.
B. y = x + 3.
C. y = x – 3.
D. y = x.
Hướng dẫn giải
Đáp án đúng là: C
Do nên đường thẳng y = x – 3 là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 2. Tìm tiệm cận đứng, tiệm cận ngang, tiệm cận xiên (nếu có) của mỗi đồ thị hàm số sau:
a)
b)
c) y = 2x – 1 +
Hướng dẫn giải
a)
Hàm số đã cho có tập xác định là ℝ \ {– 1}.
Ta có
Do đó, đường thẳng y = – 1 là tiệm cận ngang của đồ thị hàm số đã cho.
Lại có
Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.
Đồ thị hàm số đã cho không có tiệm cận xiên.
b)
Hàm số đã cho có tập xác định là ℝ \ {– 1}.
Ta có
Do đó, đồ thị hàm số đã cho không có tiệm cận ngang.
Lại có
Do đó, đường thẳng x = – 1 là tiệm cận đứng của đồ thị hàm số đã cho.
Ta có
;
Do đó, đường thẳng y = x – 4 là tiệm cận xiên của đồ thị hàm số đã cho.
c) y = 2x – 1 +
Hàm số đã cho có tập xác định là ℝ \ {0}.
Đồ thị hàm số đã cho không có tiệm cận ngang.
Ta có
Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số đã cho.
Lại có
Do đó, đường thẳng y = 2x – 1 là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 3. Nếu trong một ngày, một xưởng sản xuất được x sản phẩm thì chi phí trung bình (tính bằng nghìn đồng) cho một sản phẩm được cho bởi công thức:
a) Tìm các đường tiệm cận của đồ thị hàm số y = C(x).
b) Nêu nhận xét về chi phí của một sản phẩm khi số sản phẩm được sản xuất trong một ngày x đủ lớn.
Hướng dẫn giải
a) Xét hàm số y = với x ∈ (0; + ∞).
Ta có: Do đó, đường thẳng y = 50 là tiệm cận ngang của đồ thị hàm số y = C(x).
Lại có Do đó, đường thẳng x = 0 là tiệm cận đứng của đồ thị hàm số y = C(x).
b) Khi x → + ∞, ta có C(x) → 50, điều đó có nghĩa là khi x đủ lớn thì chi phí sản xuất một sản phẩm sẽ gần bằng 50 nghìn đồng.
Bài 4. Tiệm cận ngang của đồ thị hàm số là
A. x = 3.
B. y = 3.
C. x = – 2.
D. y = – 2.
Hướng dẫn giải
Đáp án đúng là: B
Hàm số đã cho có tập xác định là ℝ \ {– 2}.
Ta có:
Vậy đường thẳng y = 3 là tiệm cận ngang của đồ thị hàm số đã cho.
Xem thêm các chương trình khác:
- Soạn văn 12 Cánh diều (hay nhất)
- Văn mẫu 12 - Cánh diều
- Tóm tắt tác phẩm Ngữ văn 12 – Cánh diều
- Tác giả tác phẩm Ngữ văn 12 - Cánh diều
- Bố cục tác phẩm Ngữ văn 12 – Cánh diều
- Nội dung chính tác phẩm Ngữ văn 12 – Cánh diều
- Giải sgk Tiếng Anh 12 - ilearn Smart World
- Trọn bộ Từ vựng Tiếng Anh lớp 12 ilearn Smart World đầy đủ nhất
- Trọn bộ Ngữ pháp Tiếng Anh lớp 12 ilearn Smart World đầy đủ nhất
- Giải sbt Tiếng Anh 12 – iLearn Smart World
- Giải sgk Vật lí 12 – Cánh diều
- Giải Chuyên đề học tập Vật lí 12 – Cánh diều
- Lý thuyết Vật lí 12 – Cánh diều
- Giải sbt Vật lí 12 – Cánh diều
- Giải sgk Hóa học 12 – Cánh diều
- Giải Chuyên đề học tập Hóa 12 – Cánh diều
- Lý thuyết Hóa 12 – Cánh diều
- Giải sbt Hóa 12 – Cánh diều
- Giải sgk Sinh học 12 – Cánh diều
- Giải Chuyên đề học tập Sinh học 12 – Cánh diều
- Lý thuyết Sinh học 12 – Cánh diều
- Giải sbt Sinh học 12 – Cánh diều
- Giải sgk Lịch sử 12 – Cánh diều
- Giải Chuyên đề học tập Lịch sử 12 – Cánh diều
- Giải sbt Lịch sử 12 – Cánh diều
- Giải sgk Địa lí 12 – Cánh diều
- Giải Chuyên đề học tập Địa lí 12 – Cánh diều
- Giải sbt Địa lí 12 – Cánh diều
- Giải sgk Tin học 12 – Cánh diều
- Giải Chuyên đề học tập Tin học 12 – Cánh diều
- Giải sbt Tin học 12 – Cánh diều
- Lý thuyết Tin học 12 - Cánh diều
- Giải sgk Công nghệ 12 – Cánh diều
- Giải sgk Kinh tế pháp luật 12 – Cánh diều
- Giải Chuyên đề học tập Kinh tế pháp luật 12 – Cánh diều
- Giải sbt Kinh tế pháp luật 12 – Cánh diều
- Giải sgk Giáo dục quốc phòng 12 – Cánh diều
- Giải sgk Hoạt động trải nghiệm 12 – Cánh diều