[Năm 2022] Đề thi thử môn Toán THPT Quốc gia có lời giải (30 đề)
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 3)
-
8004 lượt thi
-
50 câu hỏi
-
90 phút
Danh sách câu hỏi
Câu 1:
22/07/2024Thể tích khối cầu có bán kính r là
Đáp án A
Thể tích khối cầu có bán kính r là
Câu 2:
22/07/2024Cho dãy số là cấp số nhân có số hạng đầu , công bội q=2. Tổng ba số hạng đầu của cấp số nhân là
Đáp án D
Tổng n số hạng đầu tiên của CSN có số hạng đầu , công bội q là .
Tổng ba số hạng đầu của cấp số nhân có và q=2 là
Câu 3:
23/07/2024Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?
Đáp án C
- Hàm số có TXĐ .
+ Khi a>1, hàm số đồng biến trên D.
+ Khi 0<a<1, hàm số nghịch biến trên D.
- Hàm số có TXĐ D=R.
+ Khi a>1, hàm số đồng biến trên D.
+ Khi 0<a<1, hàm số nghịch biến trên D.
Dựa vào đồ thị ta thấy hàm số đồng biến trên nên chỉ có đáp án C thỏa mãn, tức là hàm số
Câu 4:
18/07/2024Tìm tập nghiệm S của phương trình
Đáp án D
- Sử dụng công thức .
- Giải phương trình mũ dạng .
Ta có:
Vậy tập nghiệm của phương trình là
Câu 5:
18/07/2024Tìm tập hợp tất cả các giá trị của tham số m để hàm số có tập xác định là R
Đáp án B
- Hàm căn thức xác định khi biểu thức trong căn không âm.
- Hàm xác định khi và chỉ khi f(x) xác định và f(x)>0.
Hàm số có TXĐ là khi và chỉ khi:
Đặt ta có .
BBT:
Dựa vào BBT và từ (*) ta có .
Vậy
Câu 6:
18/07/2024Cho dãy số là cấp số cộng có công sai d thì có công thức là
Đáp án A
Sử dụng định nghĩa CSC: Cho dãy số là cấp số cộng có công sai d thì có công thức là
Câu 7:
16/07/2024Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh a, SO vuông góc với mặt phẳng (ABCD) và SO+a. Khoảng cách giữa SC và AB bằng
Đáp án A
- Sử dụng định lí: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách từ đường thẳng này tới mặt phẳng song song và chứa đường thẳng kia.
- Đổi tính khoảng cách từ chân đường vuông góc với mặt phẳng, sử dụng công thức .
- Dựng khoảng cách, sử dụng hệ thức lượng trong tam giác vuông để tính khoảng cách.
Ta có
Mà
Gọi M là trung điểm của CD.
Vì OM là đường trung bình của tam giác và .
Ta có: .
Trong (SOM) kẻ ta có
Áp dụng hệ thức lượng trong tam giác vuông SOM ta có
Vậy
Câu 8:
15/07/2024Cho dãy số với với . Số 21 là số hạng thứ bao nhiêu của dãy số đã cho?
Đáp án B
Giải phương trình tìm n.
Xét .
Vậy số 21 là số hạng thứ 4 của dãy.
Câu 10:
18/07/2024Đạo hàm của hàm số tại điểm x=1 là . Tính a-b
Đáp án A
Sử dụng quy tắc tính đạo hàm của một thương và công thức tính đạo hàm
Ta có:
Khi đó ta có .
Vậy
Câu 11:
18/07/2024Cho bất phương trình . Mệnh đề nào sau đây là đúng?
Đáp án D
Giải bất phương trình .
Ta có:
Vậy tập nghiệm của bất phương trình là
Câu 12:
18/07/2024Đường cong ở hình vẽ nên là đồ thị của hàm số nào?
Đáp án D
Sử dụng tương giao đồ thị hàm số, xác định giao điểm của đồ thị hàm số với trục hoành.
Đồ thị hàm số cắt qua trục hoành tại điểm có hoành độ bằng 1 và tiếp xúc trục hoành tại điểm có hoành độ bằng -2. Do đó đáp án đúng là D.
Câu 13:
17/07/2024Một hộp đựng 8 quả cầu đỏ khác nhau, 9 quả cầu trắng khác nhau, 10 quả cầu đen khác nhau. Số cách lấy ngẫu nhiên 1 quả cầu trong hộp là
Đáp án A
Sử dụng tổ hợp.
Trong hộp có tất cả 8+9+10=27 quả cầu.
Số cách chọn 1 quả cầu từ hộp trên là cách
Câu 14:
12/11/2024Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số
Đáp án đúng: A
*Lời giải:
Phương trình tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ là:
Gọi là điểm cực tiểu của hàm số đã cho, khi đó ta có
Vậy tiếp tuyến của hàm số tại điểm cực tiểu có hệ số góc bằng 0, tức là song song với trục hoành.
*Phương pháp giải:
- áp dụng công thức phương trình tiếp tuyến của đồ thị hàm số:
- Xác định tiếp điểm
- Tính
- Tiếp tuyến có dạng:
*Lý thuyết và các dạng bài tập
Bài toán 1: Viết phương trình tiếp tuyến của đồ thị hàm số (C):y=f(x) tại điểm M(x0;y0) thuộc đồ thị hàm số.
Cho hàm số (C):y=f(x) và điểm M(x0;y0)∈(C). Viết phương trình tiếp tuyến với (C) tại M.
Bước 1: Tính đạo hàm y′. Tìm hệ số góc của tiếp tuyến là y′(x0).
Bước 2: Phương trình tiếp tuyến tại điểm M là: y=y′(x0)(x−x0)+y0
Lưu ý:
- Nếu đề bài yêu cầu viết phương trình tiếp tuyến tại điểm có hoành độ x0 thì khi đó ta tìm y0 bằng cách thế vào hàm số ban đầu, tức y0=f(x0). Nếu đề cho y0 ta thay vào hàm số để giải ra x0.
- Nếu đề bài yêu cầu viết phương trình tiếp tuyến tại các giao điểm của đồ thị (C):y=f(x)và đường thẳng d:y=ax+b. Khi đó các hoành độ tiếp điểm là nghiệm của phương trình hoành độ giao điểm giữa d và (C)
Bài toán 2: Viết phương trình tiếp tuyến của đồ thị hàm số (C):y=f(x) có hệ số góc k cho trước.
Bước 1: Gọi (Δ) là tiếp tuyến cần tìm có hệ số góc k.
Bước 2: Giả sử M(x0;y0) là tiếp điểm. Khi đó x0 thỏa mãn: y′(x0)=k (*) .
Bước 3: Giải (*) tìm x0. Suy ra y0=f(x0).
Bước 4: Phương trình tiếp tuyến cần tìm là: y=k(x−x0)+y0
Lưu ý: Đề bài thường cho hệ số góc tiếp tuyến dưới các dạng sau:
- Tiếp tuyến d // Δ:y=ax+b⇒ hệ số góc của tiếp tuyến là k=a.
- Tiếp tuyến d⊥Δ:y=ax+b, (a≠0)⇔ hệ số góc của tiếp tuyến là k=−1a⋅
- Tiếp tuyến tạo với trục hoành một góc α thì hệ số góc của tiếp tuyến là k=±tanα.
Bài toán 3: Viết phương trình tiếp tuyến của đồ thị hàm số (C):y=f(x) biết tiếp tuyến đi qua điểm A(xA;yA).
Cách 1.
Bước 1: Phương trình tiếp tuyến đi qua A(xA;yA) hệ số góc k có dạng
d:y=k(x−xA)+yA(∗)
Bước 2: d là tiếp tuyến của (C) khi và chỉ khi hệ sau có nghiệm:
{f(x)=k(x−xA)+yAf′(x)=k
Bước 3: Giải hệ này tìm được x suy ra k và thế vào phương trình (∗), ta được tiếp tuyến cần tìm.
Cách 2.
Bước 1. Gọi M(x0;f(x0)) là tiếp điểm và tính hệ số góc tiếp tuyến k=y′(x0)=f′(x0) theo x0.
Bước 2. Phương trình tiếp tuyến có dạng:d:y=y′(x0).(x−x0)+y0(∗∗) . Do điểm A(xA;yA)∈d nên yA=y′(x0).(xA−x0)+y0 giải phương trình này ta tìm được x0.
Bước 3. Thế x0vào (∗∗) ta được tiếp tuyến cần tìm.
Bài toán 4 : Viết phương trình tiếp tuyến chung của hai đồ thị hàm số (C1):y=f(x) và (C2):y=g(x).
Bước 1. Gọi d tiếp tuyến chung của (C1),(C2) và x0 là hoành độ tiếp điểm của d và (C1) thì phương trình d có dạng y=f′(x0).(x−x0)+f(x0)(***)
Bước 2. Dùng điều kiện tiếp xúc của d và (C2), tìm được x0.
Bước 3. Thế x0 vào (***) ta được tiếp tuyến cần tìm.
Lưu ý:
- Hệ số góc của tiếp tuyến với (C) tại điểm M(x0;y0) thuộc (C) là: k=y′(x0)
- Cho đường thẳng (d):y=ax+b
- Tiếp tuyến tại các điểm cực trị của đồ thị (C) có phương song song hoặc trùng với trục hoành.
- Cho hàm số bậc 3: y=ax3+bx2+cx+d,(a≠0)
+) Khi a > 0: Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc nhỏ nhất.
+) Khi a < 0: Tiếp tuyến tại tâm đối xứng của (C) có hệ số góc lớn nhất.
2. Công thức tính nhanh.
Bài toán 1: Cho hàm số y=ax+bcx+d (c≠0, x≠−dc) có đồ thị (C). Phương trình tiếp tuyến Δ tại M thuộc (C) và I là giao điểm 2 đường tiệm cận. Ta luôn có:
- Nếu Δ⊥IM thì chỉ tồn tại 2 điểm M thuộc 2 nhánh của đồ thị (C) đối xứng qua I và xM=±√|ad−bc|−dc.
Cách nhớ: cxM+d=±√|ad−bc|
- M luôn là trung điểm của AB(với A,B là giao điểm của Δ với 2 tiệm cận).
- Diện tích tam giác IAB không đổi với mọi điểm M và SΔIAB=2|bc−ad|c2.
- Nếu E,F thuộc 2 nhánh của đồ thị (C) và E,F đối xứng qua I thì tiếp tuyến tại E,F
song song với nhau (suy ra một đường thẳng d đi qua E,F thì đi qua tâm I).
Xem thêm các bài viết liên quan hay, chi tiết:
50 bài toán về tiếp tuyến của đồ thị hàm số và cách giải (có đáp án 2024) – Toán 12
Câu 15:
18/07/2024Tìm tất cả các giá trị của tham số m để đồ thị hàm số có tiệm cận đứng
Đáp án C
Đường thẳng x=a được gọi là TCĐ của đồ thị hàm số
Đồ thị hàm số có TCĐ: với không là nghiệm của phương trình ax+b=0
Ta có: đồ thị hàm số có tiệm cận đứng
Câu 16:
11/07/2024Cho mặt cầu S(O;r) mặt phẳng (P) cách tâm O một khoảng bằng cắt mặt cầu (S) theo giao tuyến là một đường tròn. Hãy tính theo r chu vi của đường tròn là giao tuyến của mặt phẳng (P) và mặt cầu (S)
Đáp án C
Cho mặt cầu (S) có tâm I và bán kính R
Khi đó, mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính
Chu vi của đường tròn bán kính r là:
Theo đề bài ta có:
Khi đó bán kính đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là:
⇒ Chu vi đường tròn giao tuyến của mặt phẳng (P) và mặt cầu (S) là
Câu 17:
17/07/2024Cho hàm số y=f(x) có đạo hàm trên R Mệnh đề nào dưới đây là đúng?
Đáp án A
Sử dụng lý thuyết về Cực trị của hàm số:
Ta có: là điểm cực trị của hàm số tại điểm thì hàm số có y' đổi dấu từ dương sang âm hoặc ngược lại.
Điểm là điểm cực tiểu của hàm số tại điểm thì hàm số có y' đổi dấu từ âm sang dương.
Điểm là điểm cực đại của hàm số tại điểm thì hàm số có y' đổi dấu từ dương sang âm.
Ta có: là điểm cực trị của hàm số
Điểm là điểm cực đại của hàm số
Điểm là điểm cực tiểu của hàm số
Giải chi tiết:
Ta có: là điểm cực trị của hàm số tại điểm thì hàm số có y' đổi dấu từ dương sang âm hoặc ngược lại.
⇒ Đáp án A đúng.
Câu 18:
18/07/2024Tính thể tích của khối nón có độ dài đường sinh bằng 3, bán kính đáy bằng 2
Đáp án B
Công thức tính thể tích của khối nón có bán kính đáy r và đường sinh l là:
Thể tích khối nón đã cho là
Câu 19:
18/07/2024Cho lăng trụ đứng ABC.A'B'C' có đáy là vuông tại B; AB=2a, BC=2a, Thể tích khối lăng trụ ABC.A'B'C' là
Đáp án B
Sử dụng công thức tính thể tích khối lăng trụ V=Bh, trong đó B là diện tích đáy, h là chiều cao.
Vì ABC là tam giác vuông tại B nên .
Vậy
Câu 20:
23/07/2024Cho hình chóp S.ABC có cạnh SA vuông góc với mặt phẳng (ABC) biết Tính góc giữa hai mặt phẳng (SAB) và (SAC)
Đáp án C
- Sử dụng định lí: Góc giữa hai mặt phẳng là góc giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Sử dụng định lí Cô-sin trong tam giác để tính góc: Cho , ta có
Ta có:
Xét tam giác ABC ta có:
Vậy
Câu 21:
17/07/2024Cho x,y là hai số thực không âm thay đổi thỏa mãn x+y=1. Giá trị lớn nhất của x+y là
Đáp án D
- Rút x theo y hoặc ngược lại.
- Thế vào biểu thức x,y, đưa biểu thức về 1 biến.
- Sử dụng phương pháp hàm số để tìm GTLN của hàm số trên 1 đoạn
Vì và y=1-x.
Khi đó ta có , với .
Ta có
Vậy hay giá trị lớn nhất của x,y là , đạt được khi .
Chú ý khi giải: Các em HS có thể giải quyết bài toán trên bằng cách sử dụng BĐT như sau:
. Dấu “=” xảy ra khi và chỉ khi
Câu 22:
18/07/2024Bạn An gửi tiết kiệm một số tiền ban đầu là 1 000 000 đồng với lãi suất 0,58%/ tháng (không kỳ hạn). Hỏi bạn An phải gửi ít nhất bao nhiêu tháng thì được cả vốn lẫn lãi bằng hoặc vượt quá 1 300 000 đồng?
Đáp án A
Sử dụng công thức lãi kép trong đó:
: số tiền nhận được sau kì hạn (cả gốc lẫn lãi).
A: số tiền gửi ban đầu.
r: lãi suất 1 kì hạn.
n: số kì hạn.
Giả sử sau n tháng thì bạn An nhận được cả vốn lẫn lãi bằng hoặc vượt quá 1 300 000 đồng, khi đó ta có:
Vậy sau ít nhất 46 tháng thì bạn An nhận được cả vốn lẫn lãi bằng hoặc vượt quá 1 300 000 đồng.
Câu 23:
19/07/2024Có bao nhiêu cách chọn một bạn làm lớp trưởng và một bạn làm lớp phó từ một lớp học gồm 35 học sinh, biết rằng em nào cũng có khả năng làm lớp trưởng và lớp phó?
Đáp án B
Sử dụng chỉnh hợp.
Số cách chọn một bạn làm lớp trưởng và một bạn làm lớp phó từ một lớp học gồm 35 học sinh là cách.
Chú ý khi giải:
Do chức vụ đã rõ ràng, tức là đây là một bài toán có thứ tự, phải dùng chỉnh hợp chứ không được dùng tổ hợp.
Câu 24:
23/07/2024Cho hình chóp tam giác đều S.ABC có cạnh bên bằng 2a góc giữa cạnh bên và mặt đáy bằng . Tính thể tích của khối nón có đỉnh là S và đáy là đường tròn ngoại tiếp
Đáp án A
- Xác định góc giữa cạnh bên và mặt đáy là góc giữa cạnh bên và hình chiếu của cạnh bên trên mặt đáy.
- Sử dụng tỉ số lượng giác của góc nhọn trong tam giác vuông tính chiều cao khối chóp, cũng chính là chiều cao hình nón.
- Sử dụng công thức tính thể tích khối nón có chiều cao h, bán kính đáy r là
Gọi O là trọng tâm và O cũng chính là tâm đường tròn ngoại tiếp tam giác ABC.
Ta có là hình chiếu vuông góc của SA lên (ABC).
Xét vuông tại O có .
Vậy khối nón có đỉnh S và đáy là đường tròn ngoại tiếp có thể tích là
Câu 25:
21/07/2024Tính tổng T tất cả các nghiệm của phương trình trên đoạn
Đáp án D
- Sử dụng công thức .
- Đặt ẩn phụ , đưa phương trình về dạng phương trình bậc hai ẩn t.
- Giải phương trình tìm t.
- Sử dụng công thức hạ bậc: , sau đó giải phương trình lượng giác cơ bản tìm x: .
- Giải bất phương trình và tìm các nghiệm thỏa mãn
Ta có:
Đặt , phương trình trở thành
Xét ta có . Mà .
Vậy tổng các nghiệm của phương trình trên đoạn là
Câu 26:
22/07/2024Gọi là điểm thuộc đồ thị hàm số Tìm điều kiện của để tìm điểm M nằm phía trên đường thẳng y=2
Đáp án C
- Để điểm M nằm phía trên đường thẳng y=2 thì .
- Giải bất phương trình logarit: .
Vì là điểm thuộc đồ thị hàm số nên .
Để điểm nằm phía trên đường thẳng y=2 thì
Câu 27:
20/07/2024Cho số tự nhiên n thỏa mãn Số hạng chứa trong khai triển của bằng
Đáp án C
- Sử dụng công thức , giải phương trình tìm n.
- Sử dụng khai triển nhị thức Niu-tơn .
- Để tìm số hạng chứa ta cho số mũ của x trong khai triển bằng 7, giải phương trình tìm k. Với k vừa tìm được ta suy ra số hạng chứa
Ta có:
Khi đó ta có .
Để tìm số hạng chứa ta cho .
Vậy số hạng chứa trong khai triển trên là
Câu 28:
21/07/2024Cho hình trụ có bán kính bằng a và chiều cao gấp hai lần đường kính đáy của hình trụ. Tính diện tích xung quanh của hình trụ.
Đáp án A
Diện tích xung quanh hình trụ có chiều cao h, bán kính đáy R là .
Theo bài ra ta có R=a và .
Vậy diện tích xung quanh hình trụ là
Câu 30:
19/07/2024Có bao nhiêu cách sắp xếp 8 học sinh thành một hàng dọc?
Đáp án D
Sử dụng hoán vị.
Số cách sắp xếp 8 học sinh thành một hàng dọc là 8! cách.
Câu 31:
22/07/2024Cho tứ diện đều ABCD. M là trung điểm của BC. Khi đó cos của góc giữa hai đường thẳng nào sau đây có giá trị bằng
Đáp án D
Sử dụng định lí Cô-sin trong tam giác.
Ta có .
Xét đáp án A: .
Vì đều nên AM là phân giác của .
Do đó loại đáp án A.
Xét đáp án B và C: Giả sử ABCD là tứ diện đều cạnh 1.
Xét tam giác AMD có .
Áp dụng định lí Cô-sin trong tam giác AMD có:
⇒ Loại đáp án B.
⇒ Loại đáp án B.
Xét đáp án D: Gọi N là trung điểm của AC.
Ta có .
Ta có .
Áp dụng định lí Cô-sin trong tam giác DMN có:
(thỏa mãn).
Câu 32:
09/07/2024Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?
Đáp án D
- Dựa vào chiều nhánh cuối cùng của đồ thị xác định dấu của hệ số a.
- Thay x=0 tìm hệ số c.
- Dựa vào các điểm cực trị của hàm số chọn đáp án đúng.
BBT trên là của đồ thị hàm đa thức bậc ba dạng .
Nhánh cuối cùng của đồ thị đi lên nên a>0, do đó loại đáp án A.
Thay (do đồ thị hàm số đi qua điểm (0;2)) nên loại đáp án C.
Hàm số có 2 điểm cực trị x=0; x=2 nên loại đáp án C, do
Câu 33:
21/07/2024Trên giá sách có 6 quyển sách Toán khác nhau, 7 quyển sách Văn khác nhau và 8 quyển sách Tiếng Anh khác nhau. Có bao nhiêu cách lấy 2 quyển sách thuộc 2 môn khác nhau?
Đáp án D
Xét các TH:
+ lấy 1 quyển sách Toán và 1 quyển sách Văn
+ lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh
+ lấy 1 quyển sách Văn và 1 quyển sách Văn
Sử dụng chỉnh hợp và quy tắc cộng.
Số cách lấy 1 quyển sách Toán và 1 quyển sách Văn là 6.7=42 cách.
Số cách lấy 1 quyển sách Toán và 1 quyển sách Tiếng Anh là 6.8=48 cách.
Số cách lấy 1 quyển sách Văn và 1 quyển sách Văn là 7.8=56 cách.
Vậy số cách lấy 2 quyển sách thuộc 2 môn khác nhau là: 42+48+56=146 cách
Câu 34:
22/07/2024Hàm số đồng biến trên
Đáp án B
Hàm số đồng biến trên từng khoảng xác định của chúng.
TXĐ: .
Ta có nên hàm số đã cho đồng biến trên các khoảng và
Câu 35:
14/07/2024Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD.
Đáp án B
- Gọi H là trung điểm của .
- Sử dụng định lí Pytago tính chiều cao SH.
- Sử dụng công thức tính thể tích khối chóp
Gọi H là trung điểm của vuông tại H.
Áp dụng định lí Pytago ta có:
Vậy
Câu 36:
22/07/2024Số nghiệm của phương trình là
Đáp án C
- Chuyển vế, đưa về cùng cơ số.
- Sử dụng công thức đổi cơ số:
- Đưa phương trình đã cho về dạng tích.
- Giải phương trình lôgarit
ĐK: x>0.
Ta có:
Vậy phương trình đã cho có nghiệm duy nhất x=1
Câu 37:
05/07/2024Cho giới hạn , với là phân số tối giản. Tính giá trị của biểu thức
Đáp án A
- Phân tích tử và mẫu thành nhân tử, rút gọn để khử dạng và tính giới hạn.
- Tìm các hệ số a, b và tính .
Ta có
Vậy
Câu 38:
23/07/2024Hỏi có bao nhiêu giá trị m nguyên trong [-2020;2020] để phương trình có nghiệm duy nhất?
Đáp án D
Phương pháp giải:
- Tìm ĐKXĐ của phương trình.
- Đưa về cùng cơ số 10.
- Giải phương trình logarit: .
- Cô lập m, đưa phương trình về dạng m=f(x).
- Lập BBT của hàm số f(x), từ BBT tìm điều kiện của m để phương trình vô nghiệm.
Giải chi tiết:
ĐKXĐ:
Ta có
Do . Do đó .
Khi đó ta có , với .
Ta có
BBT:
Dựa vào BBT ta thấy phương (*) có nghiệm duy nhất .
Kết hợp điều kiện ta có .
Vậy có 2021 giá trị của m thỏa mãn yêu cầu bài toán.
Câu 39:
23/07/2024Cho hình lập phương ABCD.A'B'C'D' có tâm O. Gọi I là tâm hình vuông A'B'C'D' và M là điểm thuộc đoạn thẳng OI sao cho MO=2MI. Khi đó côsin của góc tạo bởi hai mặt phẳng (MC'D') và (MAB) bằng
Đáp án C
Phương pháp giải:
- Sử dụng định lí: Góc giữa hai mặt phẳng là giữa hai đường thẳng lần lượt thuộc hai mặt phẳng và cùng vuông góc với giao tuyến.
- Xác định góc giữa hai mặt phẳng, sử dụng định lí Pytago và định lí Côsin trong tam giác để tính góc.
Giả sử ABCD.A'B'C'D' là khối lập phương có cạnh bằng 1
Dễ thấy BC'EF là hình bình hành nên .
Áp dụng định lí Côsin trong tam giác MEF ta có
Mà góc giữa hai mặt phẳng là góc nhọn, có giá trị côsin là số dương.
Vậy
Câu 40:
17/07/2024Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M, N lần lượt là trung điểm của các cạnh AB, A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện CMNP bằng:
Đáp án C
Phương pháp giải:
- Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn.
- Trong (ACC'A') kéo dài NC cắt AA' tại E. Sử dụng tỉ số thể tích Simpson tính .
- Tính , sử dụng phương pháp phần bù để so sánh với
- Sử dụng nhận xét , từ đó tính theo V.
Giải chi tiết:
Không mất tính tổng quát, ta giả sử ABC.A'B'C' là lăng trụ đứng để bài toán đơn giản hơn
Câu 41:
18/07/2024Gọi S là tập hợp tất cả các giá trị nguyên m để đồ thị hàm số có 7 điểm cực trị. Tính tổng các phần tử của S.
Đáp án D
Phương pháp giải:
Số điểm cực trị của hàm số y=|f(x)| với f(x) là hàm đa thức = số điểm cực trị của hàm số y=f(x)+ số giao điểm (không tính điểm tiếp xúc) của đồ thị hàm số f(x) và trục hoành.
Giải chi tiết:
Xét hàm số .
Đồ thị hàm số f(x) có nhiều nhất 3 điểm cực trị và cắt trục hoành tại nhiều nhất 4 điểm.
Do đó để đồ thị hàm số y=|f(x)| có 7 điểm cực trị thì đồ thị hàm số f(x) phải cắt trục hoành tại 4 điểm phân biệt và có 3 điểm cực trị.
đồ thị hàm số f(x) phải cắt trục hoành tại 4 điểm phân biệt (vì khi đó chắc chắn hàm số y=f(x) sẽ có 3 điểm cực trị) ⇒ Phương trình phải có 4 nghiệm phân biệt.
Xét hàm số ta có .
BBT:
Dựa vào BBT ta thấy phương trình (*) có 4 nghiệm phân biệt .
Mà .
Vậy tổng tất cả các phần tử của S là
Câu 42:
18/07/2024Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy, bán kính mặt cầu ngoại tiếp hình chóp là:
Đáp án B
Phương pháp giải:
- Xác định giao điểm hai trục của hai mặt phẳng (SAB) và (ABCD), chứng minh giao điểm đó chính là tâm mặt cầu ngoại tiếp khối chóp.
- Sử dụng định lí Pytago tính bán kính mặt cầu.
Giải chi tiết:
Gọi O là tâm hình vuông , H là trung điểm của AB, G là trọng tâm ΔSAB.
Câu 43:
22/07/2024Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên để hàm số nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?
Đáp án C
Phương pháp giải:
- Tính g'(x).
- Giải phương trình g'(x)=0, xác định số nghiệm của phương trình f'(x)=0 dựa vào đồ thị hàm số y=f'(x).
- Lập BXD đạo hàm g'(x) và suy ra các khoảng nghịch biến của hàm số.
- Để hàm số nghịch biến trên (1;2) thì (1;2) phải là con của những khoảng nghịch biến của hàm số.
Giải chi tiết:
Vậy có 2021 giá trị nguyên của m thỏa mãn hay tập hợp có 2021 phần tử.
Câu 44:
19/07/2024Cho hình chóp S.ABC có AB=AC=4, BC=2, , . Gọi lần lượt là trọng tâm các tam giác và T đối xứng với S qua mặt phẳng (ABC). Thể tích khối chóp bằng , với và tối giản. Tính giá trị của biểu thức P=2a-b
Đáp án C
Phương pháp giải:
- Gọi M là trung điểm của BC, chứng minh , từ đó xác định chiều cao hạ từ đỉnh S của khối chóp bằng cách sử dụng định lí: Cho hai mặt phẳng vuông góc, đường thẳng nằm trong mặt này và vuông góc với giao tuyến thì sẽ vuông góc với mặt phẳng kia.
- Xác định tỉ số , từ đó suy ra tỉ số .
- Tính chiều cao của khối chóp, chính là chiều cao của tam giác SAM nhờ vào diện tích tam giác SAM, muốn tính ta sử dụng định lí Pytago tính từng cạnh của tam giác sau đó áp dụng công thức He-rong với p là nửa chu vi tam giác SAM.
- Tính , từ đó tính , suy ra a, b và tính P.
Giải chi tiết:
Câu 45:
23/07/2024Cho hàm số y=f(x) có bảng biến thiên như hình dưới đây. Tìm giá trị lớn nhất của hàm số trên đoạn
Đáp án A
Phương pháp giải:
- Tính g'(x), đưa về dạng tích và giải phương trình g'(x)=0.
- Trong g'(x)=0 có 1 nhân tử khá cồng kềnh, nhận xét trên [1;3] thì nhân tử đó vô nghiệm, từ đó suy ra nghiệm của phương trình g'(x)=0.
- Lập BBT hoặc phán đoán nhanh để xác định
Câu 46:
14/07/2024Cho đa giác lồi . Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành 1 tam giác không có cạnh nào là cạnh của đa giác đã cho bằng
Đáp án B
Phương pháp giải:
- Tính số phần tử của không gian mẫu.
- Gọi A là biến cố: “3 đỉnh được chọn tạo thành 1 tam giác không có cạnh nào là cạnh của đa giác đã cho”, suy ra biến cố đối : “3 đỉnh được chọn tạo thành 1 tam giác có cạnh là cạnh của đa giác đã cho”.
- Tính số phần tử của biến cố đối, xét 2 TH:
+ TH1: Số tam giác chỉ chứa 2 cạnh của đa giác.
+ TH2: Số tam giác chứa đúng 1 cạnh của đa giác.
- Sử dụng công thức tính xác suất .
Giải chi tiết:
ngẫu nhiên 3 đỉnh của đa giác, suy ra số phần tử của không gian mẫu là
Gọi A là biến cố: “3 đỉnh được chọn tạo thành 1 tam giác không có cạnh nào là cạnh của đa giác đã cho”.
: “3 đỉnh được chọn tạo thành 1 tam giác có cạnh là cạnh của đa giác đã cho”.
TH1: Số tam giác chỉ chứa 2 cạnh của đa giác là số tam giác có 3 đỉnh liên tiếp của đa giác thì có 20 tam giác như vậy.
TH2: Số tam giác chứa đúng 1 cạnh của đa giác là số tam giác có 2 đỉnh là 2 đỉnh liên tiếp của đa giác và đỉnh còn lại không kế tiếp hai đỉnh kia.
Xét 1 cạnh bất kì, ta có cách chọn 1 đỉnh trong 16 đỉnh còn lại (trừ 2 đỉnh đã chọn và 2 đỉnh kề với nó).
⇒ Có tam giác.
Vậy xác suất của biến cố A là
Câu 47:
13/07/2024Ông X muốn xây một bình chứa hình trụ có thể tích . Đáy làm bằng bêtông giá 100 nghìn đồng/ , thành làm bằng tôn giá 90 nghìn đồng/ , nắp bằng nhôm giá 140 nghìn đồng/ . Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Đáp án B
Phương pháp giải:
- Gọi bán kính đáy và chiều cao của hình trụ lần lượt là . Từ thể tích của hình trụ rút h theo r.
- Tính diện tích xung quanh và diện tích đáy, diện tích nắp của hình trụ.
- Dựa vào giá tiền từng bộ phận đề bài đã cho, tính tổng chi phí.
- Sử dụng BĐT Cô-si cho 3 số không âm a, b, c: . Dấu “=” xảy ra khi và chỉ khi a=b=c để tìm chi phí nhỏ nhất, từ đó tìm được r.
Giải chi tiết:
Gọi bán kính đáy và chiều cao của hình trụ lần lượt là .
Vì thể tích hình trụ là nên ta có .
Diện tích thành (diện tích xung quanh) hình trụ là .
Diện tích đáy và nắp hình trụ là .
Chi phí là: (nghìn đồng).
Áp dụng BĐT Cô-si ta có: .
Dấu “=” xảy ra .
Vậy chi phí thấp nhất đạt được khi bán kính đáy hình trụ là
Câu 48:
23/07/2024Cho hàm số , có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất
Đáp án B
Phương pháp giải:
- Tìm tọa độ điểm A, viết phương trình tiếp tuyến của đồ thị hàm số tại A.
- Tìm điểm cố định mà Δ đi qua với mọi m.
- Xác định tâm I và bán kính R của đường tròn .
- Biện luận: Để Δ cắt đường tròn theo một dây cung có độ dài nhỏ nhất thì phải lớn nhất. Sử dụng quan hệ giữa đường vuông góc, đường xiên tìm GTLN của , từ đó tìm m.
Giải chi tiết:
Vì và A có hoành độ bằng 1 nên ta có
Ta có .
Phương trình tiếp tuyến của (C) tại A là:
Để Δ cắt đường tròn theo một dây cung có độ dài nhỏ nhất thì phải lớn nhất.
Ta có: (quan hệ đường vuông góc, đường xiên).
Vậy để Δ cắt đường tròn tạo thành một dây cung có độ dài nhỏ nhất thì
Câu 49:
22/07/2024Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số tại ba điểm phân biệt A, B, C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.
Đáp án D
Phương pháp giải:
- Tìm điều kiện của m để đường thẳng y=m cắt đồ thị tại 3 điểm phân biệt.
- Gọi là giao điểm của đồ thị hàm số và đường thẳng y=m. Sử dụng giả thiết và định lí Vi-ét cho phương trình bậc ba, lập hệ và giải hệ tìm a,b,c.
- Với mỗi cặp a,b,c tìm được, tìm m tương ứng và tính tổng các giá trị m tìm được.
Giải chi tiết:
Dựa vào BBT, để đường thẳng y=m cắt đồ thị tại 3 điểm phân biệt thì -4<m<0.
Xét phương trình hoành độ giao điểm: .
Khi đó gọi là giao điểm của đồ thị hàm số và đường thẳng y=m thì ta có .
Theo bài ra ta có: .
Lại có a,b,c là 3 nghiệm phân biệt của phương trình (*) nên áp dụng định lí Vi-ét ta có
Câu 50:
17/07/2024Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,2m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên. Bán kính đáy của bể dự định làm gần nhất với kết quả nào dưới đây?
Đáp án D
Phương pháp giải:
- Sử dụng công thức tính thể tích khối trụ có chiều cao h, bán kính đáy r là .
- Tính thể tích từng khối trụ ban đầu và khối trụ mới dự định làm, sử dụng giả thiết bể nước mới có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên, lập phương trình và giải tìm bán kính của bể nước mới.
Giải chi tiết:
Gọi chiều cao của các bể nước hình trụ cùng bằng nhau và bằng h.
+ Thể tích bể nước có bán kính là: .
+ Thể tích bể nước có bán kính là: .
+ Thể tích bể nước lúc sau có bán kính r là .
Theo bài ra ta có .
Vậy bán kính của bể nước dự định làm gần nhất với 1,56m
Bài thi liên quan
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 1)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 2)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 4)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 5)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 6)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 7)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 8)
-
50 câu hỏi
-
90 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 9)
-
50 câu hỏi
-
50 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 10)
-
48 câu hỏi
-
50 phút
-
-
Đề thi thử môn Toán THPT Quốc gia có lời giải (Đề 11)
-
50 câu hỏi
-
90 phút
-