Câu hỏi:

17/07/2024 162

Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1m và 1,2m. Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên. Bán kính đáy của bể dự định làm gần nhất với kết quả nào dưới đây?

A. 2,12m

B. 1,65m

C. 1,75m

D. 1,56m

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp giải:

- Sử dụng công thức tính thể tích khối trụ có chiều cao h, bán kính đáy r là V=πr2h.

- Tính thể tích từng khối trụ ban đầu và khối trụ mới dự định làm, sử dụng giả thiết bể nước mới có thể tích bằng tổng thể tích bằng tổng của hai bể nước trên, lập phương trình và giải tìm bán kính của bể nước mới.

Giải chi tiết:

Gọi chiều cao của các bể nước hình trụ cùng bằng nhau và bằng h.

+ Thể tích bể nước có bán kính r1=1m là: V1=πr12h=πhm3.

+ Thể tích bể nước có bán kính r2=1,2m là: V2=πr22h=1,44πhm3.

+ Thể tích bể nước lúc sau có bán kính r là V=πr2hm3.

Theo bài ra ta có V=V1+V2.

πr2h=πh+1,44πhr2=2,44r1,56m

Vậy bán kính của bể nước dự định làm gần nhất với 1,56m

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số y=f(x) có đạo hàm liên tục trên R. Biết hàm số y=f'(x) có đồ thị như hình vẽ. Gọi S là tập hợp tất cả các giá trị nguyên m-2021;2021 để hàm số gx=fx+m nghịch biến trên khoảng (1;2). Hỏi S có bao nhiêu phần tử?

Xem đáp án » 22/07/2024 3,008

Câu 2:

Hỏi có bao nhiêu giá trị m nguyên trong [-2020;2020] để phương trình logmx=2logx+1 có nghiệm duy nhất?

Xem đáp án » 23/07/2024 2,090

Câu 3:

Cho hàm số y=x4-2mx2+m, có đồ thị (C) với m là tham số thực. Gọi A là điểm thuộc đồ thị (C) có hoành độ bằng 1. Tìm m để tiếp tuyến Δ với đồ thị (C) tại A cắt đường tròn γ:x-12+y-12=4 tạo thành một dây cung có độ dài nhỏ nhất

Xem đáp án » 23/07/2024 446

Câu 4:

Số nghiệm của phương trình log2021x+log2020x=0

Xem đáp án » 22/07/2024 434

Câu 5:

Cho hình lăng trụ ABC.A'B'C' có thể tích bằng V. Gọi M, N lần lượt là trung điểm của các cạnh AB, A'C'. P là điểm trên cạnh BB' sao cho PB=2PB'. Thể tích của khối tứ diện CMNP bằng:

Xem đáp án » 17/07/2024 276

Câu 6:

Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh a, SD=3a2, hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB. Tính theo a thể tích khối chóp S.ABCD.

Xem đáp án » 14/07/2024 253

Câu 7:

Hàm số nào trong bốn hàm số sau có bảng biến thiên như hình vẽ sau?

Xem đáp án » 09/07/2024 252

Câu 8:

Cho đa giác lồi A1A2...A20. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Xác suất để 3 đỉnh được chọn tạo thành 1 tam giác không có cạnh nào là cạnh của đa giác đã cho bằng

Xem đáp án » 14/07/2024 247

Câu 9:

Cho số tự nhiên n thỏa mãn Cn0+Cn1+Cn2=11. Số hạng chứa x7 trong khai triển của x3-1x2n bằng

Xem đáp án » 20/07/2024 244

Câu 10:

Giới hạn limx-2x-12-3x bằng

Xem đáp án » 06/07/2024 241

Câu 11:

Hàm số y=2x-5x+2 đồng biến trên

Xem đáp án » 22/07/2024 240

Câu 12:

Đường cong trong hình bên là đồ thị của hàm số nào trong bốn hàm số dưới đây?

Xem đáp án » 23/07/2024 239

Câu 13:

Cho dãy số un với un=n2+n+1 với nN*. Số 21 là số hạng thứ bao nhiêu của dãy số đã cho?

Xem đáp án » 15/07/2024 227

Câu 14:

Cho hình chóp S.ABC có AB=AC=4, BC=2, SA=43, SAB=SAC=300. Gọi G1;G2;G3 lần lượt là trọng tâm các tam giác ΔSBC,ΔSCA,ΔSAB và T đối xứng với S qua mặt phẳng (ABC). Thể tích khối chóp TG1G2G3 bằng ab, với a,bN và ab tối giản. Tính giá trị của biểu thức P=2a-b

Xem đáp án » 19/07/2024 226

Câu 15:

Gọi S là tập hợp tất cả các giá trị thực của tham số m để đường thẳng y=m cắt đồ thị hàm số y=x3-3x2 tại ba điểm phân biệt A, B, C (B nằm giữa A và C) sao cho AB=2BC. Tính tổng các phần tử thuộc S.

Xem đáp án » 22/07/2024 217

Câu hỏi mới nhất

Xem thêm »
Xem thêm »