Giải SBT Toán 7 trang 36 Tập 1 Chân trời sáng tạo
Với Giải SBT Toán 7 trang 36 Tập 1 trong Bài 1: Số vô tỉ. Căn bậc hai số học Toán lớp 7 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 7 trang 36.
Giải SBT Toán 7 trang 36 Tập 1 Chân trời sáng tạo
Bài 6 trang 36 Sách bài tập Toán 7 Tập 1: Dùng máy tính cầm tay để tính các căn bậc hai sau (làm tròn đến 3 chữ số thập phân).
a)
b)
c) ;
d)
Lời giải
Sử dụng máy tính cầm tay, giá trị các căn bậc hai là:
a)
b).
c)
d)
Bài 7 trang 36 Sách bài tập Toán 7 Tập 1: Bác Tám thuê thợ trồng hoa cho một cái sân hình vuông hết tất cả là 36 720 000 đồng. Cho biết chi phí cho 1 m2 (kể cả công thợ và vật liệu) là 255 000 đồng. Hãy tính chiều dài mỗi cạnh của cái sân.
Lời giải
Diện tích của sân hình vuông là:
36 720 000 : 255 000 = 144 (m2).
Mà cái sân hình vuông nên diện tích của sân bằng bình phương độ dài cạnh nên độ dài cạnh của hình vuông là căn bậc hai số học của diện tích.
Vì vậy chiều dài mỗi cạnh của sân là: (m).
Vậy chiều dài mỗi cạnh của sân là 12 m.
Bài 8 trang 36 Sách bài tập Toán 7 Tập 1: Tính bán kính một hình tròn có diện tích là 42,52 m2.
Lời giải
Gọi R là bán kính của hình tròn, khi đó ta có công thức: S = π.R2
Mà diện tích hình tròn là 42,52 m2 nên R2 = 42,52 : π =
⇔ R =
Vậy bán kính của hình tròn khoảng 3,68 m.
Bài 9 trang 36 Sách bài tập Toán 7 Tập 1: Tìm số hữu tỉ trong các số sau:
5,3; 2,(11); 0,456;
Lời giải
Ta có:
5,3 = (trong đó 53; 10 ∈ ℤ và 10 ≠ 0) nên 5,3 là một số hữu tỉ.
nên , (trong đó 1; 3 ∈ ℤ và 3 ≠ 0) nên là một số hữu tỉ.
là số thập phân vô hạn không tuần hoàn nên là một số vô tỉ.
2,(11) ≈ 2,111111... là số thập phân vô hạn tuần hoàn với chu kì 11 nên 2,(11) là một số hữu tỉ.
0,456 là số thập phân hữu hạn nên là một số hữu tỉ.
Ta có 1,12 = 1,21 (1,1 > 0) nên , mà 1,1 là số thập phân hữu hạn nên là một số hữu tỉ.
Vậy số hữu tỉ trong các số trên là: 5,3; 2,(11); 0,456;
Bài 10 trang 36 Sách bài tập Toán 7 Tập 1: Tìm số vô tỉ trong các số sau:
Lời giải
Ta có: là số thập phân vô hạn không tuần hoàn nên là số vô tỉ.
Ta có: nên ⇒. Mà là số hữu tỉ. Do đó là số hữu tỉ.
Ta có: nên . Mà là số hữu tỉ. Do đó là số hữu tỉ.
Bài 11 trang 36 Sách bài tập Toán 7 Tập 1: Người ta chứng minh được rằng:
- Nếu một phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân hữu hạn.
- Nếu một phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 thì phân số ấy được viết dưới dạng số thập phân vô hạn tuần hoàn.
Hãy tìm số thập phân vô hạn tuần hoàn trong các số hữu tỉ sau:
Lời giải
Xét phân số , ta có mẫu số của phân số là 20 = 22.5 có ước nguyên tố là 2 và 5 nên phân số này được viết dưới dạng số thập phân hữu hạn.
Xét phân số , ta có mẫu số của phân số là 6 = 2.3 có ước nguyên tố là 2 và 3 nên phân số này được viết dưới dạng số thập phân vô hạn tuần hoàn.
Vậy số thập phân vô hạn tuần hoàn là .
Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 7 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 7 – Chân trời sáng tạo
- Soạn văn lớp 7 (ngắn nhất) – Chân trời sáng tạo
- Văn mẫu lớp 7 – Chân trời sáng tạo
- Giải sgk Lịch sử 7 – Chân trời sáng tạo
- Lý thuyết Lịch Sử 7 – Chân trời sáng tạo
- Giải sbt Lịch sử 7 – Chân trời sáng tạo
- Giải sgk Địa lí 7 – Chân trời sáng tạo
- Lý thuyết Địa Lí 7 – Chân trời sáng tạo
- Giải sbt Địa lí 7 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 7 Friend plus – Chân trời sáng tạo
- Giải sbt Tiếng Anh 7 Friend plus– Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 7 Friends plus đầy đủ nhất
- Bài tập Tiếng Anh 7 Friends plus theo Unit có đáp án
- Giải sgk Khoa học tự nhiên 7 – Chân trời sáng tạo
- Lý thuyết Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sbt Khoa học tự nhiên 7 – Chân trời sáng tạo
- Giải sgk Giáo dục công dân 7 – Chân trời sáng tạo
- Lý thuyết Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sbt Giáo dục công dân 7 – Chân trời sáng tạo
- Giải sgk Công nghệ 7 – Chân trời sáng tạo
- Lý thuyết Công nghệ 7 – Chân trời sáng tạo
- Giải sbt Công nghệ 7 – Chân trời sáng tạo
- Giải sgk Tin học 7 – Chân trời sáng tạo
- Lý thuyết Tin học 7 – Chân trời sáng tạo
- Giải sbt Tin học 7 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 7 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 7 – Chân trời sáng tạo
- Giải sgk Âm nhạc 7 – Chân trời sáng tạo