Giải SBT Toán 10 trang 79 Tập 2 Chân trời sáng tạo
Với Giải SBT Toán 10 trang 79 Tập 2 trong Bài tập cuối chương 9 Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 79.
Giải SBT Toán 10 trang 79 Tập 2 Chân trời sáng tạo
Bài 3 trang 79 SBT Toán 10 Tập 2: Cho tam giác ABC với toạ độ ba đỉnh là A(1; 1); B(3; l); C(1; 3). Tính độ dài đường cao AH.
Lời giải:
Ta có phương trình đường thẳng BC đi qua điểm B(3; 1) có vectơ chỉ phương là vectơ và có vectơ pháp tuyến là vectơ (1; 1)
Phương trình tổng quát của BC là: (x – 3) + (y – 1) = 0 ⇔ x + y – 4 = 0.
Đường cao AH đi qua điểm A(1; 1) có véc tơ pháp tuyến là vectơ (– 2; 2) có phương trình là: – 2(x – 1) + 2(y – 1) = 0 ⇔ – x + y = 0.
Toạ độ điểm H là giao điểm của đường thẳng AH và đường thẳng BC ta có hệ
.
Suy ra toạ độ điểm H(2; 2)
Ta có AH = = .
Vậy độ dài đường cao AH là .
Bài 4 trang 79 SBT Toán 10 Tập 2: Tính bán kính của đường tròn tâm J(1; 0) và tiếp xúc với đường thẳng
Lời giải:
Bán kính của đường tròn tâm J(1; 0) và tiếp xúc với đường thẳng d: 8x – 6y + 22 = 0 là R = d(J, d) = .
Vậy bán kính của đường tròn đã cho là 3.
Bài 5 trang 79 SBT Toán 10 Tập 2: Tính khoảng cách giữa hai đường thẳng:
và (biết ∆ // ∆’).
Lời giải:
Lấy điểm M(0; ) ∈ ∆. Vì ∆ // ∆’ nên M ∉ ∆’.
Khi đó khoảng cách giữa hai đường thẳng ∆ và ∆’ bằng khoảng cách từ điểm M đến đường thẳng ∆’ và bằng:
d(∆, ∆’) = d(M,∆’) .
Bài 6 trang 79 SBT Toán 10 Tập 2: Tìm tâm và bán kính của các đường tròn có phương trình:
a) (x + 1)2 + (y + 2)2 = 225;
b) x2 + (y – 7)2 = 5;
c) x2 + y2 – 10x – 24y = 0.
Lời giải:
a) (x + 1)2 + (y + 2)2 = 225 ⇔ (x + 1)2 + (y + 2)2 = 152
Vì vậy đường tròn có tâm I(– 1; – 2), bán kính R = 15.
b) x2 + (y – 7)2 = 5 ⇔ x2 + (y – 7)2 =
Vì vậy đường tròn có tâm I(0; 7), bán kính R = .
c) x2 + y2 – 10x – 24y = 0 ⇔ x2 + y2 – 2.5x – 2.12.y = 0
Phương trình đường tròn có dạng x2 + y2 – 2ax – 2by + c = 0 với a = 5; b = 12; c = 0
Ta có R2 = a2 + b2 – c = 25 + 144 – 0 = 169 ⇒ R = .
Vậy đường tròn có tâm I(5; 12) bán kính R = 13.
Bài 7 trang 79 SBT Toán 10 Tập 2: Lập phương trình đường tròn trong các trường hợp sau:
a) Có tâm I(2; 2) và bán kính bằng 7;
b) Có tâm J( 0; -3) và đi qua điểm M(-2; -7);
c) Đi qua hai điểm A(2; 2); B(6; 2) và có tâm nằm trên đường thẳng x - y = 0;
d) Đi qua gốc toạ độ và cắt hai trục toạ độ tại các điểm có hoành độ là 8; tung độ là 6.
Lời giải:
a) Đường tròn tâm I(2; 2) và bán kính bằng 7 có phương trình:
(x – 2)2 + (y – 2)2 = 49.
Vậy phương trình đường tròn là (x – 2)2 + (y – 2)2 = 49.
b) Đường tròn tâm J(0; - 3) đi qua điểm M(- 2; - 7) có bán kính R = JM
Ta có JM = =
Đường tròn tâm J(0; - 3) bán kính R = có phương trình là
(x – 0)2 + (y + 3)2 = 20 x2 + (y + 3)2 = 20
c) Gọi tâm I(a; b) vì tâm I thuộc đường thẳng x – y = 0 nên ta có a – b = 0 a = b
Vậy tâm I(a; a)
Đường tròn đi qua hai điểm A(2; 2); B(6; 2) nên ta có AI2 = BI2
(a – 2)2 + (a – 2)2 = (a – 6)2 + (a – 2)2
a2 – 4a + 4 = a2 – 12a + 36
8a = 32
a = 4
Vậy tâm I(4; 4)
Ta có bán kính R = IA =
Phương trình đường tròn tâm I(4; 4) bán kính R = có phương trình
(x – 4)2 +(y – 4)2 = 8
d) Phương trình đường tròn đi qua O(0; 0); A(8; 0); B(0; 6)
Gọi tâm I(a; b)
Vì đường tròn đi qua 3 điểm O, A, B nên ta có
Vậy tâm I(4; 3)
Bán kính R = OI =
Phương trình đường tròn tâm I(4; 3) bán kính R = 5 có phương trình
(x – 4)2 +(y – 3)2 = 25
Bài 8 trang 79 SBT Toán 10 Tập 2: Viết phương trình tiếp tuyến với đường tròn tại điểm A(4; 5).
Lời giải:
Ta thay toạ độ điểm A vào phương trình đường tròn (C): (4 – 1)2 + (5 – 1)2 = 25. Suy ra A thuộc đường tròn (C)
Đường tròn (C) có tâm I(1; 1)
Phương trình tiếp tuyến tại của đường tròn (C) tại A là
(1 – 4)(x – 4) + (1 – 5)(x – 5) = 0 ⇔ – 3x – 4y + 32 = 0.
Bài 9 trang 79 SBT Toán 10 Tập 2: Gọi tên các đường conic sau:
Lời giải:
a) Hình vẽ đã cho biểu diễn đường Elip.
b) Hình vẽ đã cho biểu diễn đường Parabol.
c) Hình vẽ đã cho biểu diễn đường Hypebol.
Bài 10 trang 79 SBT Toán 10 Tập 2: Tìm tọa độ các tiêu điểm; toạ độ các đỉnh; độ dài trục lớn và trục nhỏ của các elip sau:
a)
b)
Lời giải:
a)
Phương trình Elip có dạng
Suy ra a = 13; b = 5 và c =
Tọa độ các đỉnh của Elip là: A1(- 13; 0); A2(13; 0); B1(0; - 5); B2(0; 5).
Tọa độ tiêu điểm của Elip là: F1(- 12; 0); F2(12; 0).
Độ dài trục lớn 2a = 26; độ dài trục nhỏ 2b = 10.
b)
Phương trình Elip có dạng
Vậy ta có a = 1; b = và c =
Các đỉnh của Elip là: A1(- 1; 0); A2(1; 0);
Tiêu điểm của Elip là:
Độ dài trục lớn 2a = 2; độ dài trục nhỏ 2b = 1
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Giải SBT Toán 10 trang 77 Tập 2
Giải SBT Toán 10 trang 78 Tập 2
Giải SBT Toán 10 trang 80 Tập 2
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Bài 3: Đường tròn trong mặt phẳng tọa độ
Bài 4: Ba đường conic trong mặt phẳng tọa độ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo