Giải SBT Toán 10 trang 59 Tập 2 Chân trời sáng tạo
Với Giải SBT Toán 10 trang 59 Tập 2 trong Bài 1: Tọa độ của vectơ Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 59.
Giải SBT Toán 10 trang 59 Tập 2 Chân trời sáng tạo
Bài 3 trang 59 SBT Toán 10 Tập 2: Cho tam giác MNP có toạ độ các đỉnh là M(3; 3), N(7; 3) và P(3; 7).
a) Tìm toạ độ trung điểm E của cạnh MN.
b) Tim toạ độ trọng tâm G của tam giác MNP.
Lời giải:
a) Gọi E(xE; yE) là trung điểm của MN
Ta có
Vậy E(5; 3).
b) Gọi G(xG; yG) là trọng tâm của tam giác MNP
Ta có
Vậy .
Bài 4 trang 59 SBT Toán 10 Tập 2: Cho tam giác ABC có toạ độ các đỉnh là A(1; 3), B(3; 1) và C(6; 4).
a) Tính độ đài ba cạnh của tam giác ABC và số đo của góc B.
b) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.
Lời giải:
a) + Độ dài các cạnh của tam giác ABC
Suy ra AB = .
Suy ra AB = .
Suy ra AC = .
+ Tính số đo góc B
Ta có
Mà = 90o.
b) Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC:
Suy ra
Vậy .
Bài 5 trang 59 SBT Toán 10 Tập 2: Cho năm điểm A(2 ; 0), B(0; – 2), C(3; 3), D(– 2; – 2), E(1; – 1). Trong các điểm đã cho, hãy tìm điểm:
a) Thuộc trục hoành;
b) Thuộc trục tung;
c) Thuộc đường phân giác của góc phần tư thứ nhất.
Lời giải:
a) Điểm thuộc trục hoành là điểm có tung độ bằng 0. Do đó các điểm thuộc trục hoành là: A(2; 0).
b) Điểm thuộc trục hoành là điểm có hoành độ bằng 0. Do đó các điểm thuộc trục tung là: B(0; – 2).
c) Điểm thuộc đường phân giác của góc phần tư thứ nhất có hoành độ bằng tung độ. Do đó các điểm thuộc đường phân giác của góc phần tư thứ nhất là: C(3; 3); D(– 2; – 2).
Bài 6 trang 59 SBT Toán 10 Tập 2: Cho điểm M(4; 5). Tìm toạ độ:
a) Điểm H là hình chiếu vuông góc của điểm M trên trục Ox;
b) Điểm M’ đối xứng với M qua trục Ox;
c) Điểm K là hình chiếu vuông góc của điểm M trên trục Oy;
d) Điểm M’’ đối xứng với M qua trục Oy;
e) Điểm C đối xứng với M qua gốc O.
Lời giải:
a) Gọi H(a; 0) (a ≠ 0) là hình chiếu vuông góc của M trên trục Ox
Ta có
Mà
Do đó chỉ có a = 4 là thỏa mãn điều kiện.
Vậy H(4; 0) là hình chiếu vuông góc của M trên trục Ox.
b) Ta có điểm M’(x’; y’) đối xứng với điểm M(x; y) qua trục Ox
Vậy M’(4; – 5) là điểm đối xứng với M qua trục Ox.
c) Gọi K(0; b) (b ≠ 0) là hình chiếu vuông góc của M trên trục Oy.
Ta có
Mà
Do đó chỉ có b = 5 là thỏa mãn điều kiện.
Vậy K(0; 5) là hình chiếu vuông góc của M trên trục Oy.
d) Ta có điểm M”(x”; y”) đối xứng với điểm M(x; y) qua trục Oy
Vậy M”(– 4; 5) là điểm đối xứng với M qua trục Oy.
e) Gọi C(x; y) là điểm đối xứng với M qua gốc toạ độ O
Suy ra O là trung điểm của MC.
Ta có
Vậy C(– 4; – 5).
Bài 7 trang 59 SBT Toán 10 Tập 2: Cho ba điểm A(1; 1), B(2; 4), C(4; 4).
a) Tìm toạ độ điểm D sao cho ABCD là một hình bình hành.
b) Tìm toạ độ giao điểm hai đường chéo của hình bình hành ABCD.
Lời giải:
a)
Giả sử D(x; y)
Ta có
Để ABCD là hình bình hành thì
Vậy D(3; 1).
b) Gọi I là giao điểm của hai đường chéo AC và BD
Vậy I là trung điểm của AC và BD theo tính chất hình hành
Ta có
Vậy .
Bài 8 trang 59 SBT Toán 10 Tập 2: Cho tam giác ABC có toạ độ các đỉnh là A(1; 1), B(7; 3), C(4; 7) và cho các điểm M(2; 3), N(3; 5).
a) Chứng minh bốn điểm A, M, N, C thẳng hàng.
b) Chứng minh trọng tâm của các tam giác ABC và MNB trùng nhau.
Lời giải:
a) Ta có suy ra . Do đó 3 điểm A, M, N thẳng hàng
Ta có suy ra . Do đó 3 điểm A, M, C thẳng hàng
Vì 3 điểm A, M, N thẳng hàng nên N thuộc đường thẳng AM; 3 điểm A, M, C thẳng hàng nên C thuộc đường thẳng AM.
Vậy 4 điểm A, M, N, C thẳng hàng.
b) Goi G(x; y) là trọng tâm tam giác ABC
Ta có
Suy ra G .
Goi G’(x’; y’) là trọng tâm tam giác MNB
Ta có
Suy ra G’ .
Do đó điểm G trùng G’.
Vậy trọng tâm tam giác ABC và MNB trùng nhau.
Bài 9 trang 59 SBT Toán 10 Tập 2: Cho bốn điểm M(6; – 4), N(7; 3), P(0; 4), Q(– 1; -3). Chứng minh rằng tứ giác MNPQ là hình vuông.
Lời giải:
Ta có nên hai véc tơ cùng phương suy ra MN song song với PQ và MN = QP (1)
Ta có nên hai véc tơ cùng phương suy ra MQ song song với NP và MQ = NP (2)
Mà vậy MN = NP = PQ = MQ (3)
Từ (1); (2); (3) suy ra tứ giác MNPQ là hình thoi (4)
Ta có vậy MN NP.
Tứ giác MNPQ là hình thoi và có 1 góc vuông nên tứ giác MNPQ là hình vuông.
Bài 10 trang 59 SBT Toán 10 Tập 2: Tính góc giữa hai vectơ và trong các trường hợp sau:
a)
b)
c)
Lời giải:
a) Ta có
Vậy .
b) Ta có
Vậy .
c) Ta có .
Vậy .
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Giải SBT Toán 10 trang 58 Tập 2
Giải SBT Toán 10 trang 60 Tập 2
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Bài 2: Đường thẳng trong mặt phẳng tọa độ
Bài 3: Đường tròn trong mặt phẳng tọa độ
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo