Cho các hàm số phân thức hữu tỉ sau: (1) y = x/x+căn 2; (2) y = 2x-1/x+1

Lời giải Thực hành 2 trang 91 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 133 09/06/2024


Giải Toán 12 Kết nối tri thức Khảo sát và vẽ đồ thị hàm số với phần mềm GeoGebra

Thực hành 2 trang 91 Toán 12 Tập 1: Cho các hàm số phân thức hữu tỉ sau:

(1) y = xx+2;

(2) y = 2x1x+1;

(3) y = x22x8x1;

(4) y = 5x+1+32x3.

a) Tìm đạo hàm cấp một của các hàm số trên.

b) Tìm các đường tiệm cận của đồ thị các hàm số trên.

c) Vẽ đồ thị của các hàm số trên.

Lời giải:

(1) y = xx+2

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(xx+2), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(xx+2), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = xx+2 bằng cách nhập câu lệnh Asymptote(xx+2).

Bước 2: Vẽ đồ thị hàm số y = xx+2 bằng cách nhập hàm số y = xx+2 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(2) y = 2x1x+1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(2x1x+1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(2x1x+1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 2x1x+1 bằng cách nhập câu lệnh Asymptote(2x1x+1).

Bước 2: Vẽ đồ thị hàm số y = 2x1x+1bằng cách nhập hàm số y = 2x1x+1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(3) y = x22x8x1

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(x22x8x1), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(x22x8x1), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = x22x8x1 bằng cách nhập câu lệnh Asymptote(x22x8x1).

Bước 2: Vẽ đồ thị hàm số y = x22x8x1 bằng cách nhập hàm số y = x22x8x1 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

(4) y = 5x+1+32x3

a) Để tính đạo hàm cấp một ta dùng lệnh Derivative(5x+1+32x3), kết quả sẽ được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

b) Để tìm đường tiệm cận của đồ thị hàm số, ta nhập lệnh Asymptote(5x+1+32x3), kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

c) Bước 1: Vẽ tiệm cận của đồ thị hàm số y = 5x+1+32x3 bằng cách nhập câu lệnh Asymptote(5x+1+32x3).

Bước 2: Vẽ đồ thị hàm số y = 5x+1+32x3 bằng cách nhập hàm số y = 5x+1+32x3 vào ô lệnh. Kết quả được hiển thị như hình bên dưới

Thực hành 2 trang 91 Toán 12 Tập 1 | Kết nối tri thức Giải Toán 12

1 133 09/06/2024


Xem thêm các chương trình khác: