Câu hỏi:
22/07/2024 153
Phương trình có nghiệm là:
A. x = 1;
A. x = 1;
B. x = –1;
B. x = –1;
C. x = 1 hoặc x = –1;
D. Vô nghiệm.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Bình phương hai vế của phương trình trên, ta được:
4x2 – 3 = x2
⇒ 3x2 – 3 = 0
⇒ x = 1 hoặc x = –1.
Với x = 1, ta có (đúng)
Với x = –1, ta có (vô lí)
Vì vậy khi thay các giá trị x = 1 và x = –1 vào phương trình đã cho, ta thấy chỉ có x = 1 thỏa mãn.
Vậy phương trình đã cho có nghiệm là x = 1.
Ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Bình phương hai vế của phương trình trên, ta được:
4x2 – 3 = x2
⇒ 3x2 – 3 = 0
⇒ x = 1 hoặc x = –1.
Với x = 1, ta có (đúng)
Với x = –1, ta có (vô lí)
Vì vậy khi thay các giá trị x = 1 và x = –1 vào phương trình đã cho, ta thấy chỉ có x = 1 thỏa mãn.
Vậy phương trình đã cho có nghiệm là x = 1.
Ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Câu 2:
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?
Câu 3:
Cho hàm số y = f(x) có đồ thị như hình bên.
Bảng xét dấu của tam thức bậc hai tương ứng là:
Cho hàm số y = f(x) có đồ thị như hình bên.
Bảng xét dấu của tam thức bậc hai tương ứng là:
Câu 5:
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Câu 8:
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Câu 11:
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Câu 13:
Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?
Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?