Câu hỏi:
23/07/2024 2,842
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?
Cho hàm số y = f(x) = ax2 + bx + c có đồ thị như hình vẽ.
Đặt ∆ = b2 – 4ac. Chọn khẳng định đúng?
A. a > 0, ∆ > 0;
A. a > 0, ∆ > 0;
B. a < 0, ∆ > 0;
B. a < 0, ∆ > 0;
C. a > 0, ∆ = 0;
D. a < 0, ∆ = 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Quan sát đồ thị, ta thấy:
⦁ Đồ thị y = f(x) cắt trục Ox tại hai điểm phân biệt có hoành độ lần lượt là x1 = 1; x2 = 4.
Suy ra f(x) có 2 nghiệm phân biệt x1 = 1; x2 = 4.
Do đó ∆ > 0.
⦁ Trên khoảng (–∞; 1) và (4; +∞), ta có f(x) > 0. Suy ra a > 0.
Vậy ta có a > 0, ∆ > 0.
Ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Quan sát đồ thị, ta thấy:
⦁ Đồ thị y = f(x) cắt trục Ox tại hai điểm phân biệt có hoành độ lần lượt là x1 = 1; x2 = 4.
Suy ra f(x) có 2 nghiệm phân biệt x1 = 1; x2 = 4.
Do đó ∆ > 0.
⦁ Trên khoảng (–∞; 1) và (4; +∞), ta có f(x) > 0. Suy ra a > 0.
Vậy ta có a > 0, ∆ > 0.
Ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Cho hàm số bậc hai f(x) có đồ thị như hình bên.
Tập nghiệm của bất phương trình f(x) ≥ 0 là:
Câu 2:
Cho hàm số y = f(x) có đồ thị như hình bên.
Bảng xét dấu của tam thức bậc hai tương ứng là:
Cho hàm số y = f(x) có đồ thị như hình bên.
Bảng xét dấu của tam thức bậc hai tương ứng là:
Câu 4:
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Cho tam thức bậc hai f(x) = x2 – 10x + 2. Kết luận nào sau đây đúng?
Câu 7:
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho tam thức bậc hai f(x) = –2x2 + 8x – 8. Trong các mệnh đề sau, mệnh đề nào đúng?
Câu 10:
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Cho tam thức bậc hai f(x) = x2 + 1. Mệnh đề nào sau đây đúng nhất?
Câu 13:
Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?
Cho f(x) = –x2 – 4x + 5. Có bao nhiêu giá trị nguyên của x thỏa mãn f(x) ≥ 0?