Câu hỏi:
12/07/2024 187
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
Cho tan α = 2. Giá trị của \(A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }}\) là :
A. 5;
A. 5;
B. \(\frac{5}{3}\);
B. \(\frac{5}{3}\);
C. 7;
C. 7;
D.\(\frac{7}{3}\).
D.\(\frac{7}{3}\).
Trả lời:
Đáp án đúng là: C
Áp dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{cos\alpha }}\) (cos α ≠ 0), ta có:
\[A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }} = \frac{{3\tan \alpha .cos\alpha + cos\alpha }}{{\tan \alpha .cos\alpha - cos\alpha }} = \frac{{3\tan \alpha + 1}}{{\tan \alpha - 1}} = \frac{{3.2 + 1}}{{3.2 - 1}} = 7\].
Đáp án đúng là: C
Áp dụng công thức \(\tan \alpha = \frac{{\sin \alpha }}{{cos\alpha }}\) (cos α ≠ 0), ta có:
\[A = \frac{{3\sin \alpha + \cos \alpha }}{{\sin \alpha - \cos \alpha }} = \frac{{3\tan \alpha .cos\alpha + cos\alpha }}{{\tan \alpha .cos\alpha - cos\alpha }} = \frac{{3\tan \alpha + 1}}{{\tan \alpha - 1}} = \frac{{3.2 + 1}}{{3.2 - 1}} = 7\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 4:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Câu 5:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Câu 6:
Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:y
Rút gọn biểu thức \(A = \frac{{{{(1 - {{\tan }^2}\alpha )}^2}}}{{4{{\tan }^2}\alpha }} - \frac{1}{{4{{\sin }^2}\alpha .co{s^2}\alpha }}\) bằng:y
Câu 7:
Giá trị của biểu thức \(M = \frac{{{{\tan }^2}30^\circ + {{\sin }^2}60^\circ - {{\cos }^2}45^\circ }}{{{{\cot }^2}120^\circ + {{\cos }^2}150^\circ }}\) bằng:
Giá trị của biểu thức \(M = \frac{{{{\tan }^2}30^\circ + {{\sin }^2}60^\circ - {{\cos }^2}45^\circ }}{{{{\cot }^2}120^\circ + {{\cos }^2}150^\circ }}\) bằng:
Câu 13:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng: