Tìm công thức hàm số bậc hai biết
Lời giải bài 4 trang 55 SBT Toán 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 10 Tập 1.
Giải SBT Toán lớp 10 Bài 2: Hàm số bậc hai
Bài 4 trang 55 SBT Toán 10 Tập 1: Tìm công thức hàm số bậc hai biết:
a) Đồ thị hàm số đi qua 3 điểm A(1; – 3), B(0; – 2), C(2; – 10).
b) Đồ thị hàm số có trục đối xứng là đường thẳng x = 3, cắt trục tung tại điểm có tung độ bằng – 16 và một trong hai giao điểm với trục hoành có hoành độ là – 2.
Lời giải:
Hàm số bậc hai có công thức tổng quát: y = ax2 + bx + c (a ≠ 0).
a) Đồ thị hàm số đi qua điểm A(1; – 3) nên: – 3 = a . 12 + b . 1 + c hay a + b + c = – 3. (1)
Đồ thị hàm số đi qua điểm B(0; – 2) nên: – 2 = a . 02 + b . 0 + c hay c = – 2.
Đồ thị hàm số đi qua điểm C(2; – 10) nên: – 10 = a . 22 + b . 2 + c hay 4a + 2b + c = – 10. (2).
Thay c = – 2 vào (1) ta được: a + b – 2 = – 3 ⇔ a + b = – 1 ⇔ a = – 1 – b. (3)
Thay c = – 2 vào (2) ta được: 4a + 2b – 2 = – 10 ⇔ 4a + 2b = – 8 ⇔ 2a + b = – 4. (4)
Thay (3) vào (4) ta được: 2.(– 1 – b) + b = – 4 ⇔ – 2 – 2b + b = – 4 ⇔ b = 2.
Thay b = 2 vào (3) ta được: a = – 1 – 2 = – 3 (t/m).
Vậy công thức hàm số là y = – 3x2 + 2x – 2.
b) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng – 16 nên c = – 16.
Khi đó, công thức hàm số là f(x) = ax2 + bx – 16.
Một trong hai giao điểm của đồ thị hàm số với trục hoành có hoành độ bằng – 2 nên ta có a . (– 2)2 + b . (– 2) – 16 = 0 hay 2a – b – 8 = 0. (*)
Đồ thị hàm số có trục đối xứng là đường thẳng x = 3 nên hay b = – 6a.
Thay b = – 6a vào (*) ta có: 2a – (– 6a) – 8 = 0 ⇔ 8a = 8 ⇔ a = 1.
Suy ra: b = – 6 . 1 = – 6.
Vậy công thức hàm số là y = x2 – 6x – 16.
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1 trang 54 SBT Toán 10 Tập 1: Hàm số nào trong các hàm sau đây không phải là hàm số bậc hai...
Bài 3 trang 55 SBT Toán 10 Tập 1: Tìm công thức của hàm số có đồ thị vẽ được ở Bài tập 2...
Bài 5 trang 55 SBT Toán 10 Tập 1: Tìm khoảng biến thiên và tập giá trị của các hàm số sau...
Bài 6 trang 55 SBT Toán 10 Tập 1: Tìm tập xác định, giá trị lớn nhất của hàm số, tập giá trị...
Lý thuyết Bài 2: Hàm số bậc hai
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Giá trị lượng giác của 1 góc từ 0° đến 180°
Bài 2: Định lí côsin và định lí sin
Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo