120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao
120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (P4)
-
1469 lượt thi
-
25 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
10/07/2024Phương trình là phương trình đường tròn có:
Đáp án B
Ta có:
=> ( x-2) 2+ (y +3) 2= 16 sin2t + 16cos2t
=> ( x-2) 2+ (y +3) 2= 16
Vậy là phương trình đường tròn có tâm I( 2; -3) , bán kính R= 4.
Câu 2:
18/07/2024Đường tròn (C) đi qua điểm A( 2;4) và tiếp xúc với các trục tọa độ có phương trình là:
Đáp án A
Gọi phương trình đường tròn (C) : (x-a)2+ (y- b) 2= R2
Do (C) tiếp xúc với các trục tọa độ nên mà điểm A( 2; 4) thuộc (C) nằm trong góc phần tư thứ nhất nên I( a; b) cũng ở góc phần tư thứ nhất.
Suy ra a= b= R > 0.
Vậy (C) : (x-a) 2+ ( y-a) 2= a2.
Do A thuộc C nên ( 2-a) 2+ (4-a) 2 = a2 hay a2-12a + 20 = 0
Câu 3:
20/07/2024Tìm đường tròn đi qua hai điểm A( 1; 3) và B( -2; 5) và tiếp xúc với đường thẳng d: 2x – y + 4= 0.
Đáp án D
Đặt f( x; y) = 2x – y+ 4.
Ta có: f( 1; 3) = 3> 0 và f( -2; 5) = -4 – 5+ 4= -5 <0
=> A và B nằm ở 2 phía so với đường thẳng d.
=> không có đường tròn nào thỏa mãn đầu bài.
Câu 4:
19/07/2024Đường tròn (C) đi qua hai điểm A( 1;3) và B( 3;1) và có tâm nằm trên đường thẳng d: 2x –y + 7= 0 có phương trình là:
Đáp án B
Gọi I (a; b) là tâm của đường tròn (C) do đó:
AI2 = BI2
Nên ( a-1) 2+ (b-3) 2 = (a-3) 2+ (b-1) 2
=> a= b (1)
Mà I( a; b) thuộc d: 2x- y + 7= 0 nên 2a – b+ 7= 0 (2)
Thay (1) vào (2) ta có: a= -7 => b= -7
Khi đó: R2= AI2= 164 .
Vậy phương trình (C) : ( x+ 7)2+ (y+7)2= 164 .
Câu 5:
22/07/2024Đường tròn (C) tiếp xúc với trục tung tại điểm A( 0; -2) và đi qua điểm B( 4; -2) có phương trình là:
Đáp án A
Ta thấy yA= yB= -2 nên phương trình đường thẳng AB là y= -2
=> AB vuông góc với trục tung.
Mà đường tròn (C) tiếp xúc với trục tung tại A nên AB là đường kính của (C) .
Suy ra tâm I ( 2; -2) là trung điểm của AB và bán kính R = IA= 2.
Vậy phương trình (C) : (x-2)2+ (y+2) 2= 4 .
Câu 6:
22/07/2024Phương trình đường tròn (C) có tâm I( 6;2) và tiếp xúc ngoài với đường tròn (C’) :x2 + y2 – 4x + 2y +1 =0 là:
Đáp án D
Đường tròn C’:
x2 + y2 – 4x + 2y +1 =0
Có tâm I’( 2; -1) bán kính R’ =2 và
Do đường tròn (C) tâm I( 6;2) tiếp xúc ngoài với (C) nên :
II’=R + R’
=> R = II’- R’ = 5- 2= 3
Phương trình đường tròn cần tìm có tâm I ( 6;2) và R= 3 :
( x- 6) 2+( y-2) 2= 9 hay x2+ y2-12x - 4y +31= 0
Câu 7:
23/07/2024Cho đường tròn (C): (x+ 1) 2 + (y-3)2 = 4 và đường thẳng d: 3x-4y + 5= 0. Phương trình của đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài lớn nhất là:
Đáp án C
Đường tròn (C) có tâm I( -1 ; 3) và bán kính R= 2
Do d’// d nên phương trình của d’ có dạng : 3x- 4y + c= 0.
Để d’ chắn trên (C) một dây cung có độ dài lớn nhất thì d’ phải đi qua tâm I của đường tròn ( trong các dây của đường tròn dây lớn nhất là đường kính).
Do I( -1 ; 3) thuộc d’ nên : 3.(-1) – 4.3 +c= 0
=> c = 15
Vậy đường thẳng cần tìm là d’ : 3x- 4y + 15= 0.
Câu 8:
20/07/2024Cho đường tròn (C) : x2+ y2+ 4x – 6y +5= 0. Đường thẳng d đi qua A(3;2) và cắt (C) theo một dây cung dài nhất có phương trình là:
Đáp án D
Trong các dây của đường tròn; dây lớn nhất là đường kính. Nên để d cắt (C) theo 1 dây cung dài nhất thì d phải đi qua tâm I ( -2; 3) của đường tròn.
Vậy d qua I và A(3;2) nên có VTCP và có VTPT
=> phương trình d: 1( x- 3) + 5( y- 2) = 0 hay x+ 5y – 13= 0
Do đó d: x+ 5y -13= 0 .
Câu 9:
23/07/2024Cho đường tròn (C) : x2+ y2+ 4x – 6y – 36 = 0. Đường thẳng d đi qua A( 3;2) và cắt (C) theo một dây cung ngắn nhất có phương trình là:
Đáp án C
+ Ta có nhận xét sau: đường tròn đã cho có tâm I( -2; 3) và R = 7
Mà:
Suy ra A nằm ở trong (C) .
+ Gọi đường thẳng d cắt (C) theo dây cung MN.
Dây cung MN ngắn nhất khi và chỉ khi IH lớn nhất ( trong đó H là hình chiếu của I trên d)
có vectơ pháp tuyến là
Vậy d có phương trình: 5( x-3) -1( y-2) =0 hay 5x – y -13= 0
Câu 10:
15/07/2024Cho đường tròn (C): (x- 2)2+ (y-2) 2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A( 5; - 1) là:
Đáp án B
Đường tròn (C) có tâm I( 2;2) và bán kính R= 3.
là vectơ pháp tuyến của tiếp tuyến :
: A(x- 5) + B( y+1) =0
Do d là tiếp tuyến của (C) nên:
+ Nếu A= 0, chọn B = 1 ta được d : y+1= 0
+ Nếu B= 0, chọn A= 1 ta được d : x- 5= 0
Câu 11:
20/07/2024Cho đường tròn (C) : x2+ y2+ 6x -2y + 5= 0 và đường thẳng d đi qua điểm A(- 4;2) , cắt (C) tại hai điểm M; N sao cho A là trung điểm của MN. Phương trình của đường thẳng d là:
Đáp án A
Đường tròn (C) có tâm
Do đó:
ở trong đường tròn.
Để A là trung điểm của
là vectơ pháp tuyến của d nên d có phương trình: -1 (x+ 4) + 1.( y-2) =0
Hay x- y + 6= 0.
Câu 12:
18/07/2024Cho hai điểm A( -2; 1) và B( 3;5) và điểm M thỏa mãn .Khi đó điểm M nằm trên đường tròn nào sau đây?
Đáp án A
Do điểm M thỏa mãn suy ra M nằm trên đường tròn đường kính AB; có tâm là trung điểm của AB và bán kính:
=> phương trình đường tròn cần tìm:
=> x2+ y2 – x – 6y - 1 =0 .
Câu 13:
23/07/2024Cho đường tròn (C) x2+ y2- 2x + 6y + 6= 0 và đường thẳng d: 4x -3y + 5= 0. Đường thẳng d’ song song với đường thẳng d và chắn trên (C) một dây cung có độ dài bằng có phương trình là:
Đáp án B
Đường tròn (C) có tâm I( 1; -3) và R= 2
có phương trình 4x- 3y+ m= 0.
Vẽ
Vậy:
Câu 14:
12/07/2024Cho đường tròn (C) : (x- 3) 2+ (y +1) 2= 5. Phương trình tiếp tuyến của (C) song song với đường thẳng d : 2x+ y + 5 = 0 là:
Đáp án A
Phương trình tiếp tuyến có dạng
∆: 2x+ y+ m= 0.
Đường tròn (C) :
(x- 3) 2+ (y +1) 2= 5 có tâm I( 3; -1) và bán kính
Đường thẳng tiếp xúc với đường tròn (C) khi
Vậy có 2 đường thẳng thỏa mãn là:
2x+ y= 0 và 2x+ y -10= 0
Câu 15:
15/07/2024Cho đường tròn (C) : x2+ y2 – 2x + 8y – 23= 9 và điểm M( 7; 4). Độ dài đoạn tiếp tuyến của (C) xuất phát từ M là:
Đáp án B
Đường tròn (C) :
x2+ y2 – 2x + 8y – 23= 9 có tâm I( 1 ; -4) bán kính R= 7.
Ta có:
và IM= 10 > R.
=> điểm M nằm ngoài đường tròn.
Khi đó từ M ta sẽ kẻ được 2 tiếp tuyến với đường tròn. Và độ dài đoạn tiếp tuyến xuất phát từ M là:
Câu 16:
23/07/2024Tìm phương trình chính tắc của Elip có trục lớn bằng 6 và tỉ số của tiêu cự với độ dài trục lớn bằng 1/3.
Đáp án B
Do trục lớn là 6 nên 2a= 6 => a= 3
Gọi phương trình chính tắc của Elip có dạng:
Tỉ số của tiêu cự với độ dài trục lớn bằng 1/3.
Nên:
Mà a= 3 nên c= 1 => b2= a2- c2= 9- 1= 8
Vậy phương trình ( E) cần tìm là:
Câu 17:
11/07/2024Tìm phương trình chính tắc của Elip có một đường chuẩn là x+ 4= 0 và một tiêu điểm là điểm (-1; 0) .
Đáp án A
Gọi phương trình chính tắc của Elip có dạng:
Ta có:
Lại có : ( E) có 1 tiêu điểm là (-1 ; 0) nên c= 1
=> a2= 4 => b2= a2- c2= 3
Vậy phương trình (E) cần tìm là :
Câu 18:
10/07/2024Tìm phương trình chính tắc của Elip có trục lớn gấp đôi trục bé và đi qua điểm (2;-2).
Đáp án D
Gọi phương trình chính tắc của Elip có dạng:
Theo đề bài: Trục lớn gấp đôi trục bé nên a= 2b => a2= 4b2
Điểm (2; -2) thuộc Elip:
Ta được hệ:
Vậy phương trình (E) cần tìm là :
Câu 19:
19/07/2024Cho Elip (E): một điểm M nằm trên (E). Lúc đó đoạn thẳng OM thoả mãn:
Đáp án D
Gọi M( 4 cost ; 3sin t) thuộc (E)
Khi đó:
Vì :
Câu 20:
21/07/2024Biết Elip (E) có các tiêu điểm và đi qua Gọi N là điểm đối xứng với M qua gốc toạ độ. Chọn khẳng định đúng?
Đáp án D
Do N đối xứng với M qua gốc tọa độ nên tọa độ điểm
Suy ra:
Từ đó: NF1+ MF1= 8.
Câu 21:
21/07/2024Lập phương trình chính tắc của Elip có tâm sai ,khoảng cách giữa hai đường chuẩn là
Đáp án A
Ta có tâm sai
khoảng cách giữa hai đường chuẩn là:
Suy ra phương trình elip là:
Câu 22:
22/07/2024Trong mặt phẳng với hệ trục tọa đô, cho hai đường thẳng x+ y-1= 0 và 3x –y+ 5= 0. Hãy tìm diện tích hình bình hành có hai cạnh nằm trên hai đường thẳng đã cho, một đỉnh là giao điểm của hai đường thẳng đó và giao điểm của hai đường chéo là I(3;3).
Đáp án B
Gọi hình bình hành là ABCD và
d:x+ y-1 = 0, ∆: 3x – y+ 5= 0 .
Không làm mất tính tổng quát giả sử:
Ta có : . Vì I(3;3) là tâm hình bình hành nên C(7;4) ;
=> Đường thẳng ACcó pt là: x- 4y + 9= 0.
Do => Đường thẳng BC đi qua điểm C và có vtpt có pt là: 3x – y- 17= 0.
Khi đó :
Ta có:
Câu 23:
19/07/2024Trong mặt phẳng với hệ trục tọa độ Oxy; tam giác ABC có đỉnh A( 2;-3) ; B( 3;-2) và diện tích tam giác ABC bằng 3/2. Biết trọng tâm G của tam giác ABC thuộc đường thẳng d: 3x- y- 8= 0. Tìm tọa độ điểm C.
Đáp án B
=> Đường thẳng AB có pt là: x- y – 5= 0.
Gọi G(a;3a- 8) suy ra C( 3a- 5; 9a -19).
Ta có:
Vậy C( 1 ; -1) và C( -2 ; -10)
Câu 24:
16/07/2024Trong mặt phẳng với hệ trục tọa đô Oxy , cho hai đường thẳng ∆1: x- y+ 1= 0 và ∆2: 2x + y-1 = 0 và điểm P (2;1) .Viết phương trình đường thẳng đi qua điểm P và cắt hai đường thẳng ∆1, ∆2 lần lượt tại hai điểm A: B sao cho P là trung điểm AB?
Đáp án A
Ta có
Vì A thuộc ∆1 nên A( a; a+ 1).
Vì P( 2;1) là trung điểm của đoạn AB nên B( 4-a; 1-a).
Mặt khác:
Đường thẳng AP có VTPT ( 4;-1) và qua P(2;1) nên có phương trình:
4x – y- 7 = 0
Câu 25:
20/07/2024Cho đường tròn (C) : x2+ y2- 8x + 6y +21= 0 và đường thẳng d: x+ y-1= 0.Xác định tọa độ các đỉnh A của hình vuông ABCD ngoại tiếp (C) biết
Đáp án A
Đường tròn (C) có tâm I(4; -3) , bán kính R= 2
Tọa độ của tâm I( 4; -3) thỏa phương trình d: x+y-1= 0 . Vậy
Vậy AI là một đường chéo của hình vuông ngoại tiếp đường tròn, có bán kính R= 2.
=> 2 đường thẳng x = 2 và x = 6 là 2 tiếp tuyến của (C) .
+ Nếu A là giao điểm các đường d và x= 2 thì A( 2; -1)
+ Nếu A là giao điểm các đường (d) và x= 6 thì A( 6; -5).
Bài thi liên quan
-
120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (P1)
-
25 câu hỏi
-
30 phút
-
-
120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (P2)
-
25 câu hỏi
-
30 phút
-
-
120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (P3)
-
25 câu hỏi
-
30 phút
-
-
120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (P5)
-
20 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Hình học Ôn tập chương 3 (có đáp án) (540 lượt thi)
- 160 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng (1775 lượt thi)
- 120 câu trắc nghiệm Phương pháp tọa độ trong mặt phẳng nâng cao (1468 lượt thi)
- Trắc nghiệm Ôn tập chương 3: Phương pháp toạ độ trong mặt phẳng có đáp án (334 lượt thi)
- Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Nhận biết) (254 lượt thi)
- Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Thông hiểu) (354 lượt thi)
- Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (Vận dụng) (238 lượt thi)
- Trắc nghiệm Ôn tập Toán 10 Chương 3 Hình học có đáp án (316 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Phương trình đường elip (có đáp án) (853 lượt thi)
- Trắc nghiệm Phương trình đường tròn (có đáp án) (747 lượt thi)
- Trắc nghiệm Phương trình đường thẳng (có đáp án) (608 lượt thi)
- Trắc nghiệm: Phương trình đường tròn có đáp án (404 lượt thi)
- Trắc nghiệm Phương trình đường elip có đáp án (392 lượt thi)
- Trắc nghiệm Phương trình đường thẳng có đáp án (Thông hiểu) (391 lượt thi)
- Trắc nghiệm: Phương trình đường thẳng có đáp án (384 lượt thi)
- Trắc nghiệm Phương trình đường tròn có đáp án (Vận dụng) (377 lượt thi)
- Trắc nghiệm Phương trình đường thẳng có đáp án (Nhận biết) (361 lượt thi)
- Trắc nghiệm Phương trình đường elip có đáp án (Vận dụng) (355 lượt thi)