Giải SBT Toán 10 trang 70 Tập 2 Chân trời sáng tạo
Với Giải SBT Toán 10 trang 70 Tập 2 trong Bài 3: Đường tròn trong mặt phẳng tọa độ Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 70.
Giải SBT Toán 10 trang 70 Tập 2 Chân trời sáng tạo
Bài 2 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn (C) trong các trường hợp sau:
a) (C) có tâm O(0; 0) và có bán kính R = 9;
b) (C) có đường kính AB với A(1; l) và B(3; 5),
c) (C) có tâm M(2; 3) và tiếp xúc với đường thẳng 3x – 4y + 9 = 0,
d) (C) có tâm I(3; 2) và đi qua điểm B(7; 4).
Lời giải:
a) Đường trong (C) tâm O(0; 0) và có bán kính R = 9 có phương trình là:
x2 + y2 = 81
b) Đường tròn (C) có đường kính AB với A(1; l) và B(3; 5)
Khi đó đường tròn (C) có tâm I là trung điểm của đoạn thẳng AB và bán kính R =
Gọi toạ độ tâm I(x; y)
Ta có suy ra I(2; 3)
Ta lại có: AB = mà suy ra
Vậy bán kính R = .
Phương trình đường tròn (C) có tâm I(2; 3) và bán kính R = là:
(x – 2)2 + (y – 3)2 = 5.
c) Đường tròn (C) có tâm M(2; 3) và tiếp xúc với đường thẳng ∆: 3x – 4y + 9 = 0
Vậy đường tròn (C) có bán kính R = d(M, ∆).
Ta có d(M, ∆) = suy ra bán kính R =
Vậy phương trình đường tròn (C) có tâm M(2; 3) và bán kính R = là:
(x – 2)2 + (y – 3)2 =
d) Đường tròn (C) có tâm I(3; 2) và đi qua điểm B(7; 4).
Suy ra đường tròn (C) có bán kính R = IB.
Ta có IB = mà suy ra
Phương trình đường tròn (C) có tâm I(3; 2) và bán kính R = là:
(x – 3)2 + (y – 2)2 = 20.
Bài 3 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn ngoại tiếp tam giác có toạ độ các đỉnh là:
a) A(1; 4), B(0; 1), C(4; 3);
b) O(0; 0), P(16; 0), R(0; 12).
Lời giải:
a) Phương trình đường tròn ngoại tiếp tam giác ABC với A(1; 4), B(0; 1), C(4; 3)
Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác ABC
Suy ra
Suy ra I(2; 2)
Bán kính R = IB ta có IB = mà suy ra
Vậy phương trình đường tròn (C) có tâm I(2; 2) và bán kính R = là:
(x – 2)2 + (y – 2)2 = 5.
b) Phương trình đường tròn ngoại tiếp tam giác OPR với O(0; 0), P(16; 0), R(0; 12).
Ta có: ⇒ = 16.0 + 0.12 = 0.
⇒ OP ⊥ OR
Do đó tam giác OPR vuông tại O nên tâm đường tròn ngoại tiếp tam giác OPR là trung điểm của PR và bán kính R = OI.
Gọi I(x; y) là tâm đường tròn ngoại tiếp tam giác OPR
Suy ra . Do đó tâm I(8; 6)
Bán kính R = OI mà suy ra
Vậy phương trình đường tròn ngoại tiếp tam giác OPR có tâm I(8; 6) bán kính R = 10 là: (x – 8)2 + (y – 6)2 = 100.
Bài 4 trang 70 SBT Toán 10 Tập 2: Lập phương trình đường tròn tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1).
Lời giải:
Phương trình đường tròn (C) tiếp xúc với hai trục toạ độ Ox, Oy và đi qua điểm A(2; 1)
Giả sử đường tròn (C) có tâm I(a ; b) và bán kính là R
(C) tiếp xúc với trục Ox suy ra R = d(I, Ox) =
(C) tiếp xúc với trục Oy suy ra R = d(I, Oy) =
Suy ra =
Vậy a = b hoặc a = - b
Trường hợp 1. a = b thì I(a; a) bán kính R = |a|
Ta có A (C) IA = R ⇔ IA2 = R2
⇔ (2 – a)2 + (1 – a)2 = a2
⇔ 4 – 4a + a2 + 1 – 2a + a2 = a2
⇔ a2 – 6a + 5 = 0
⇔ a = 1 hoặc a = 5
Với a = 1 thì đường tròn (C) có tâm I(1; 1) bán kính R = 1 có phương trình là:
(x – 1)2 + (y – 1)2 = 1
Với a = 5 thì đường tròn (C) có tâm I(5; 5) bán kính R = 5 có phương trình là:
(x – 5)2 + (y – 5)2 = 25
Trường hợp 2. a = – b thì I(a; – a) bán kính R =
Ta có A (C) IA = R IA2 = R2
⇔ (2 – a)2 + (1 + a)2 = a2
⇔ 4 – 4a + a2 + 1 + 2a + a2 = a2
⇔ a2 – 2a + 5 = 0 (phương trình vô nghiệm)
Vậy có 2 đường tròn thoả mãn bài toán là (x – 1)2 + (y – 1)2 = 1 hoặc (x – 5)2 + (y – 5)2 = 25.
Bài 5 trang 70 SBT Toán 10 Tập 2: Cho đường tròn (C) có phương trình x2 + y2 – 6x – 2y – 15 = 0.
a) Chứng tỏ rằng điểm A(0; 5) thuộc đường tròn (C);
b) Viết phương trình tiếp tuyến với (C) tại điểm A(0; 5);
c) Viết phương trình tiếp tuyến với (C) song song với đường thẳng 8x + 6y + 99 = 0.
Lời giải:
a) Thay toạ độ điểm A(0; 5) vào phương trình đường tròn ta được
02 + 52 – 6.0 – 2.5 – 15 = 0 (thoả mãn phương trình đường tròn)
Vậy điểm A(0; 5) thuộc đường tròn (C).
b) Ta có điểm A thuộc đường tròn (C)
Xét đường tròn (C): x2 + y2 – 6x – 2y – 15 = 0 ⇔ (x – 3)2 + (y – 1)2 = 52
Suy ra đường tròn (C) có tâm I(3; 1) và R = 5
Phương trình tiếp tuyến của đường tròn (C) tại điểm A(0; 5) là:
(3 – 0)(x – 0) + (1 – 5)(y – 5) = 0
3x – 4y + 20 = 0
c) Vì phương trình tiếp tuyến của (C) song song với đường thẳng 8x + 6y + 99 = 0 nên có dạng ∆: 8x + 6y + c = 0.
Lại có ∆ là tiếp tuyến của (C) nên d(I, ∆) = R
Ta có |30 + c| = 50
Suy ra 30 + c = 50 hoặc 30 + c = – 50
Với 30 + c = 50 c = 20
Phương trình ∆: 8x + 6y + 20 = 0 ⇔ 4x + 3y + 10 = 0.
Với 30 + c = – 50 c = – 80
Phương trình ∆: 8x + 6y – 80 = 0 ⇔ 4x + 3y – 40 = 0.
Vậy có hai phương trình tiếp tuyến thoả mãn bài toán là: 4x + 3y + 10 = 0 hoặc 4x + 3y – 40 = 0
Bài 6 trang 70 SBT Toán 10 Tập 2: Một cái cổng hình bán nguyệt rộng 6,8 m, cao 3,4m. Mặt đường dưới cổng được chia thành hai làn cho xe ra vào.
a) Viết phương trình mô phỏng cái cổng.
b) Một chiếc xe tải rộng 2,4 m và cao 2,5 m đi đúng làn đường quy định có thể đi qua cổng được hay không?
Lời giải:
a) Giả sử cái cổng hình bán nguyệt có dạng như hình vẽ
Cái cổng là nửa hình tròn có bán kính R = 3,4 m
Phương trình mô phỏng cái cổng là phương trình đường tròn tâm O(0; 0) bán kính R = 3,4 m có dạng: x2 + y2 = 11,56.
b) Chiếc xe tải rộng 2,4 m; cao 2,5 m ta có toạ độ điểm xa nhất của xe tải so với tâm của cổng là điểm M(2,4; 2,5)
Ta có độ dài đoạn OM = mà (2,4; 2,5)
Vậy suy ra độ dài đoạn thẳng OM = 3,5 m > R
Vì điểm xa nhất của xe tải lớn hơn bán kính đường tròn khi đi đúng làn đường xe tải không qua được cổng.
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Giải SBT Toán 10 trang 69 Tập 2
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo với cuộc sống hay, chi tiết khác:
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo