Giải SBT Toán 10 trang 19 Tập 2 Chân trời sáng tạo

Với Giải SBT Toán 10 trang 19 Tập 2 trong Bài 3: Phương trình quy về phương trình bậc hai Toán lớp 10 Tập 2 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 19.

1 211 09/12/2022


Giải SBT Toán 10 trang 19 Tập 2 Chân trời sáng tạo

Bài 5 trang 19 SBT Toán 10 Tập 2: Khoảng cách từ nhà An ở vị trí N đến cột điện C là 10 m. Từ nhà, An đi x mét theo phương tạo với NC một góc 60° đến vị trí A sau đó đi tiếp 3m đến vị trí B như Hình 1.

a) Biểu diễn khoảng cách AC và BC theo x.

b) Tìm x để AC=89BC

c) Tìm x để khoảng cách BC = 2AN.

Sách bài tập Toán 10 Bài 3: Phương trình quy về phương trình bậc hai - Chân trời sáng tạo (ảnh 1)

Lưu ý: Đáp số làm tròn đến hàng phần mười.

Lời giải:

a) Vì x là khoảng cách AN nên x > 0

Áp dụng định lí côsin cho tam giác ANC:

AC2 = AN2 + NC2 – 2.AN.NC.cos60°

AC2 = x2 + 100 – 2.x.10.12 = x2 – 10x + 100

Như vậy AC = x2 10x + 100

Áp dụng định lí côsin cho tam giác BNC:

BC2 = BN2 + NC2 – 2.AN.NC.cos60°

BC2 = ( 3 + x )2 + 100 – 2.( 3 + x ).10.12 = x2 + 6x + 9 + 100 – 30 – 10x

BC2  = x2 – 4x + 79

Như vậy BC = x2 4x + 79.

b) Ta có AC=89BC 

Sách bài tập Toán 10 Bài 3: Phương trình quy về phương trình bậc hai - Chân trời sáng tạo (ảnh 1)

81( x2 – 10x + 100 ) = 64( x2 – 4x + 79 )

17x2 – 554x + 3044 = 0

x ≈ 25,6 hoặc x ≈ 7

Vậy x ≈ 25,6 hoặc x ≈ 7.

c) Ta có BC = 2AN

x2 4x + 79 = 2x

x2 – 4x + 79 = 4x2

3x2 + 4x – 79 = 0

x ≈ 4,5 hoặc x ≈ –5,8 mà x > 0 nên x ≈ 4,5.

Vậy x ≈ 4,5 .

Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Giải SBT Toán 10 trang 18 Tập 2

1 211 09/12/2022


Xem thêm các chương trình khác: