Câu hỏi:
22/07/2024 131
Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\)
Tìm tất cả các giá trị của a để bất phương trình ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\)
A. a = 0;
A. a = 0;
B. a < 0;
B. a < 0;
C. \(0 < a \le \frac{1}{2}\).
C. \(0 < a \le \frac{1}{2}\).
D. \(a \ge \frac{1}{2}\).
D. \(a \ge \frac{1}{2}\).
Trả lời:
Đáp án đúng là: D
ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta = {\left( { - 1} \right)^2} - 4.a.a \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\1 - 4{a^2} \le 0\end{array} \right.\)
Xét tam thức bậc hai f(a) = 1 – a2, có ∆ = 02 – 4.(-4).1 = 16 > 0. Do đó f(a) có hai nghiệm phân biệt \(a = \frac{1}{2}\) và \(a = - \frac{1}{2}\)
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có 1 – 4a2 ≤ 0 \( \Leftrightarrow a \in \left( { - \infty ; - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\).
Kết hợp với điều kiện a > 0 suy ra a ∈ \(\left[ {\frac{1}{2}; + \infty } \right)\).
Vậy để ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) thì a ∈ \(\left[ {\frac{1}{2}; + \infty } \right)\) hay a ≥ \(\frac{1}{2}\).
Đáp án đúng là: D
ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) \( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\\Delta = {\left( { - 1} \right)^2} - 4.a.a \le 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}a > 0\\1 - 4{a^2} \le 0\end{array} \right.\)
Xét tam thức bậc hai f(a) = 1 – a2, có ∆ = 02 – 4.(-4).1 = 16 > 0. Do đó f(a) có hai nghiệm phân biệt \(a = \frac{1}{2}\) và \(a = - \frac{1}{2}\)
Ta có bảng xét dấu
Dựa vào bảng xét dấu ta có 1 – 4a2 ≤ 0 \( \Leftrightarrow a \in \left( { - \infty ; - \frac{1}{2}} \right] \cup \left[ {\frac{1}{2}; + \infty } \right)\).
Kết hợp với điều kiện a > 0 suy ra a ∈ \(\left[ {\frac{1}{2}; + \infty } \right)\).
Vậy để ax2 – x + a ≥ 0, \(\forall x \in \mathbb{R}\) thì a ∈ \(\left[ {\frac{1}{2}; + \infty } \right)\) hay a ≥ \(\frac{1}{2}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Cho f(x) = mx2 – 2x – 1. Xác định m để f(x) < 0 với mọi x ∈ ℝ.
Câu 4:
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Đồ thị hàm số y = 4x2 – 3x – 1 có dạng nào trong các dạng sau đây?
Câu 5:
Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
Cho f(x) = x2 – 1. Tìm khẳng định sai trong các khẳng định sau đây
Câu 7:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Cho hàm số y = ax2 + bx + c có đồ thị như hình sau:
Kết luận nào sau đây đúng về hệ số a, b:
Câu 8:
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Cho parabol (P): y = ax2 + bx + c có đồ thị như hình bên. Phương trình của parabol này là :
Câu 9:
Số giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {x + 1} + 3}} = 1\) là:
Số giá trị nguyên của x thỏa mãn điều kiện xác định của phương trình :\(\sqrt {2 - x} + \frac{4}{{\sqrt {x + 1} + 3}} = 1\) là:
Câu 12:
Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Tổng các nghiệm của phương trình \[{x^2} - 2x + 3\sqrt {{x^2} - 2x - 3} = 7\] là:
Câu 13:
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình sau:
Hàm số đồng biến trên khoảng
Câu 14:
Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm
Tìm tất cả các giá trị thực của tham số m để bất phương trình
f(x) = (m – 3)x2 + (m + 2)x – 4 > 0 vô nghiệm