Câu hỏi:

18/07/2024 115

Cho tam giác ABC. M là điểm bất kì thỏa mãn 2MA+MB=CA. Chọn khẳng định đúng?


A. M là trung điểm của AB;


B. M là trực tâm tam giác ABC;

C. M là trọng tâm tam giác ABC;

Đáp án chính xác

D. M là tâm đường tròn ngoại tiếp tam giác ABC.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Media VietJack

Gọi I là trung điểm của AB nên MA+MB=2MI.

2MA+MB=CA

MA+MB=CAMA

MA+MB=CA+AM

2MI=CM

Do đó ba điểm M, I, C thẳng hàng sao cho CM = 2MI

Suy ra CM = 23CI

Mà CI là trung tuyến của tam giác ABC nên M là trọng tâm tam giác ABC.

Vậy ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho tam giác ABC, M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AN = 2NC. Biểu diễn vectơ MN theo AB và AC ta được

Xem đáp án » 18/07/2024 468

Câu 2:

Cho tam giác ABC vuông cân tại A cạnh AB = a. Độ dài của 2ABAC bằng

Xem đáp án » 23/07/2024 203

Câu 3:

Gọi G là trọng tâm tam giác ABC. Gọi GA=a;  GB=b. Giá trị của m và n để có BC=ma+nb là

Xem đáp án » 11/11/2024 156

Câu 4:

Cho tam giác ABC có I là trung điểm của BC. Điểm M thỏa mãn 4MA=MB+MC là

Xem đáp án » 20/07/2024 137

Câu 5:

Cho hình bình hành ABCD. Biểu diễn AB theo AC và BD ta được

Xem đáp án » 20/07/2024 132

Câu 6:

Cho tam giác ABC có D là trung điểm của BC và G là trọng tâm tam giác ABC.

Đẳng thức nào sau đây đúng?

Xem đáp án » 13/07/2024 119

Câu 7:

Cho tam giác ABC, M là trung điểm của BC, I là điểm bất kì. Khẳng định nào sau đây đúng?

Xem đáp án » 13/07/2024 103

Câu hỏi mới nhất

Xem thêm »
Xem thêm »