Câu hỏi:
12/07/2024 130
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
A. \(BC = 2\sqrt 2 ,\,\,AC = 2\sqrt 3 ,\,\,AB = \sqrt 6 + \sqrt 2 ,\,\,\widehat C = 15^\circ \);
B. \(BC = 2\sqrt 3 ,\,\,AC = 2\sqrt 2 ,\,\,AB = \sqrt 6 + \sqrt 2 ,\,\,\widehat C = 15^\circ \);
C. \(BC = 2\sqrt 3 ,\,\,AC = 2\sqrt 2 ,\,\,AB = \sqrt 6 - \sqrt 2 ,\,\,\widehat C = 15^\circ \);
D. \(BC = 2\sqrt 2 ,\,\,AC = 2\sqrt 3 ,\,\,AB = \sqrt 6 - \sqrt 2 ,\,\,\widehat C = 15^\circ \).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Theo hệ quả định lí sin, ta có:
⦁ BC = 2R.sinA = 2.2.sin120° = \(2\sqrt 3 \).
⦁ AC = 2R.sinB = 2.2.sin45° = \(2\sqrt 2 \).
Theo định lí côsin, ta có BC2 = AC2 + AB2 – 2.AC.AB.cosA
Suy ra \({\left( {2\sqrt 3 } \right)^2} = {\left( {2\sqrt 2 } \right)^2} + A{B^2} - 2.2\sqrt 2 .AB.\cos 120^\circ \)
Khi đó \(A{B^2} + 2\sqrt 2 .AB - 4 = 0\)
Vì vậy \(AB = \sqrt 6 - \sqrt 2 \) hoặc \(AB = - \sqrt 6 - \sqrt 2 \)
Vì AB là độ dài một cạnh của ∆ABC nên ta có AB > 0.
Do đó ta nhận \(AB = \sqrt 6 - \sqrt 2 \).
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {120^\circ + 45^\circ } \right) = 15^\circ \).
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Theo hệ quả định lí sin, ta có:
⦁ BC = 2R.sinA = 2.2.sin120° = \(2\sqrt 3 \).
⦁ AC = 2R.sinB = 2.2.sin45° = \(2\sqrt 2 \).
Theo định lí côsin, ta có BC2 = AC2 + AB2 – 2.AC.AB.cosA
Suy ra \({\left( {2\sqrt 3 } \right)^2} = {\left( {2\sqrt 2 } \right)^2} + A{B^2} - 2.2\sqrt 2 .AB.\cos 120^\circ \)
Khi đó \(A{B^2} + 2\sqrt 2 .AB - 4 = 0\)
Vì vậy \(AB = \sqrt 6 - \sqrt 2 \) hoặc \(AB = - \sqrt 6 - \sqrt 2 \)
Vì AB là độ dài một cạnh của ∆ABC nên ta có AB > 0.
Do đó ta nhận \(AB = \sqrt 6 - \sqrt 2 \).
∆ABC có \(\widehat A + \widehat B + \widehat C = 180^\circ \) (định lí tổng ba góc trong một tam giác)
Suy ra \(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {120^\circ + 45^\circ } \right) = 15^\circ \).
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:
Câu 2:
Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:
Câu 3:
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Câu 5:
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Câu 7:
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Câu 8:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?