Câu hỏi:
21/07/2024 253Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
A. \(a = 6\sqrt 3 ,\,\,b = 2 + 4\sqrt 6 ,c = 4;\);
B. \(a = 6\sqrt 3 ,\,\,b = 4,\,\,c = 2 + 4\sqrt 6 \);
C. \(a = 6\sqrt 3 ,\,\,b = 4,c = 2 + \sqrt 6 ;\)
D. \(a = 6\sqrt 3 ,\,\,b = 2 + \sqrt 6 ,c = 4\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
⦁ Theo hệ quả định lí sin, ta có:
a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).
⦁ Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).
Suy ra hc = b.sinA
Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).
⦁ Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA
Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)
Khi đó c2 – 4c – 92 = 0
Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).
Vì c là độ dài một cạnh của ∆ABC nên c > 0.
Do đó ta nhận \(c = 2 + 4\sqrt 6 \).
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
⦁ Theo hệ quả định lí sin, ta có:
a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).
⦁ Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).
Suy ra hc = b.sinA
Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).
⦁ Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA
Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)
Khi đó c2 – 4c – 92 = 0
Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).
Vì c là độ dài một cạnh của ∆ABC nên c > 0.
Do đó ta nhận \(c = 2 + 4\sqrt 6 \).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:
Câu 2:
Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:
Câu 3:
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Câu 4:
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Câu 7:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Câu 8:
Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?
Câu 9:
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?