Câu hỏi:
23/07/2024 317Cho ∆ABC thỏa mãn sinC = 2sinB.cosA. Khi đó ∆ABC là:
A. Tam giác tù;
B. Tam giác đều;
C. Tam giác vuông cân;
D. Tam giác cân.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
• Theo hệ quả định lí sin, ta có:
\(\sin C = \frac{c}{{2R}}\) và \(\sin B = \frac{b}{{2R}}\).
• Theo hệ quả của định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
• Ta có sinC = 2sinB.cosA
\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\[ \Leftrightarrow c = 2b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Leftrightarrow c = \frac{{{b^2} + {c^2} - {a^2}}}{c}\]
⇔ c2 = b2 + c2 – a2
⇔ b2 = a2
⇔ b = a (vì a, b > 0)
Hay AC = BC.
Suy ra ∆ABC cân tại C.
Vậy ta chọn phương án D.
Hướng dẫn giải
Đáp án đúng là: D
• Theo hệ quả định lí sin, ta có:
\(\sin C = \frac{c}{{2R}}\) và \(\sin B = \frac{b}{{2R}}\).
• Theo hệ quả của định lí côsin, ta có:
\(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\).
• Ta có sinC = 2sinB.cosA
\( \Leftrightarrow \frac{c}{{2R}} = 2.\frac{b}{{2R}}.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)
\[ \Leftrightarrow c = 2b.\frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\]
\[ \Leftrightarrow c = \frac{{{b^2} + {c^2} - {a^2}}}{c}\]
⇔ c2 = b2 + c2 – a2
⇔ b2 = a2
⇔ b = a (vì a, b > 0)
Hay AC = BC.
Suy ra ∆ABC cân tại C.
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có AB = 4, AC = 5 và \(\cos A = \frac{3}{5}\). Độ dài đường cao kẻ từ A bằng:
Câu 2:
Cho ∆ABC có \(a = 2\sqrt 3 ,\,\,b = 2\sqrt 2 ,\,\,c = \sqrt 6 - \sqrt 2 \). Góc lớn nhất của ∆ABC bằng:
Câu 3:
Cho ∆ABC biết \(\widehat A = 60^\circ ,\,\,\widehat B = 40^\circ \), c = 14. Khẳng định nào sau đây sai?
Câu 4:
Cho ∆ABC biết \(a = \sqrt 6 \), b = 2, \(c = 1 + \sqrt 3 \). Khẳng định nào sau đây đúng nhất?
Câu 6:
Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
Câu 7:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Câu 8:
Cho ∆ABC nội tiếp đường tròn bán kính bằng 3, biết \(\widehat A = 30^\circ ,\,\,\widehat B = 45^\circ \). Độ dài bán kính đường tròn nội tiếp ∆ABC gần giá trị nào nhất?
Câu 9:
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?
Cho \(\widehat A = 120^\circ ,\,\,\widehat B = 45^\circ \), R = 2. Khẳng định nào sau đây sai?