Trong không gian Oxyz, cho một điểm M không thuộc các mặt phẳng tọa độ. Vẽ hình hộp chữ nhật OADB.CFME

Lời giải HĐ2 trang 61 Toán 12 Tập 1 sách Kết nối tri thức hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập Toán 12.

1 204 09/06/2024


Giải Toán 12 Kết nối tri thức Bài 7: Hệ trục toạ độ trong không gian

HĐ2 trang 61 Toán 12 Tập 1: Trong không gian Oxyz, cho một điểm M không thuộc các mặt phẳng tọa độ. Vẽ hình hộp chữ nhật OADB.CFME có ba đỉnh A, B, C lần lượt thuộc các tia Ox, Oy, Oz (H.2.37).

Tài liệu VietJack

a) Hai vectơ OMOA+OB+OC có bằng nhau hay không?

b) Giải thích vì sao có thể viết OM=xi+yj+zk với x, y, z là các số thực.

Lời giải:

a) Vì OADB.CFME là hình hộp chữ nhật nên theo quy tắc hình hộp ta có: OM=OA+OB+OC

b) Vì i là vectơ đơn vị trên trục Ox nên OA=xi với x là số thực.

j là vectơ đơn vị trên trục Oy nên OB=yj với y là số thực.

k là vectơ đơn vị trên trục Oz nên OC=zk với z là số thực.

Do đó, OM=OA+OB+OC=xi+yj+zk với x, y, z là các số thực.

1 204 09/06/2024


Xem thêm các chương trình khác: