Lý thuyết Ôn tập: So sánh hai phân số (tiếp theo) (mới 2022 + Bài Tập) - Toán lớp 5

Tóm tắt nội dung chính bài Ôn tập: So sánh hai phân số (tiếp theo) lớp 5 môn Toán gồm lý thuyết ngắn gọn, các dạng bài tập về Ôn tập: So sánh hai phân số (tiếp theo) điển hình và các ví dụ minh họa giúp học sinh nắm vững kiến thức từ đó biết cách làm bài tập Ôn tập: So sánh hai phân số (tiếp theo) Toán lớp 5. 

1 1,399 17/06/2022
Tải về


Lý thuyết Ôn tập: So sánh hai phân số (tiếp theo) lớp 5

4) Một số cách so sánh khác

Dạng 1: So sánh với 1

Điều kiện áp dụng:  Phương pháp này áp dụng cho dạng bài so sánh hai phân số, trong đó một phân số bé hơn 1 và một phân số lớn hơn 1.

Ví dụ: So sánh hai phân số 89 và 75.

Cách giải:

89<1 và 1<75 nên 89<75

Dạng 2: So sánh với phân số trung gian

Điều kiện áp dụng: Phương pháp này áp dụng khi tử số của phân số thứ nhất bé hơn tử số của phân số thứ hai và mẫu số của phân số thứ nhất lại lớn hơn mẫu số của phân số thứ hai hoặc ngược lại. Khi đó ta so sánh với phân số trung gian là phân số có tử số bằng tử số của phân số thứ nhất, có mẫu số bằng mẫu số của phân số thứ hai hoặc ngược lại.

Phương pháp giải:

Bước 1: Chọn phân số trung gian.

Bước 2: So sánh hai phân số ban đầu với phân số trung gian.

Bước 3: Rút ra kết luận.

Lưu ý: So sánh hai phân số ab và cd (a, b, c, d  khác 0).

Nếu a > c và b < d (hoặc a < c và b>d  thì ta có thể chọn phân số trung gian là ad hoặc cb

Ví dụ: So sánh hai phân số 2735 và 2833

Cách giải:

Chọn phân số trung gian là 2733

Ta thấy 2735<2733 và 2733<2833 nên 2735<2833

Dạng 3: So sánh bằng phần bù 

Điều kiện áp dụng: Nhận thấy mẫu số lớn hơn tử số (phân số bé hơn 1) và hiệu của mẫu số với tử số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần bù với 1.

Chú ý: Phần bù với 1 của phân số là hiệu giữa 1 và phân số đó.

Quy tắc: Trong hai phân số, phân số nào có phần bù lớn hơn thì phân số đó nhỏ hơn và ngược lại phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn.

Phương pháp giải:

Bước 1: Tìm phần bù của hai phân số.

Bước 2: So sánh hai phần bù với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số 997998 và 998999

Cách giải:

997998=11998998999=11999

Vì 998<999 nên 1998>1999. Do đó, 11998<11999

Do đó, 997998<998999.

Dạng 4: So sánh bằng phần hơn

Điều kiện áp dụng: Nhận thấy tử số lớn hơn mẫu số ( phân số lớn hơn 1) và hiệu của tử số với mẫu số của tất cả các phân số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1.

Chú ý: Phần hơn với 1 của phân số là hiệu giữa phân số đó và 1.

Quy tắc: Trong hai phân số, phân số nào có phần hơn lớn hơn thì phân số đó lớn hơn và ngược lại phân số nào có phần hơn nhỏ hơn thì phân số đó nhỏ hơn.

Phương pháp giải:

Bước 1: Tìm phần hơn của hai phân số.

Bước 2: So sánh hai phần hơn với nhau.

Bước 3: Rút ra kết luận.

Ví dụ: So sánh hai phân số 335333 và 279277

Giải

335333=1+2333279277=1+2277

Vì 333>277 nên 2333<2277. Do đó, 1+2333<1+2277

Vậy 335333<279277.

Xem thêm các bài tổng hợp lý thuyết Toán lớp 5 đầy đủ, chi tiết khác:

Lý thuyết Ôn tập: So sánh hai phân số (tiếp theo)

Lý thuyết Phân số thập phân

Lý thuyết Ôn tập: Phép cộng và phép trừ hai phân số

Lý thuyết Ôn tập: Phép nhân và phép chia hai phân số

Lý thuyết Hỗn số

1 1,399 17/06/2022
Tải về