Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Phần 2) có đáp án

Trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Phần 2) có đáp án

Trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Phần 2) có đáp án (Nhận biết)

  • 838 lượt thi

  • 7 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

22/07/2024

Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là \({\vec a_1}\), \({\vec a_2}\). Gọi M là một điểm nằm trên đường thẳng d1. Khi đó d1 trùng d2 khi và chỉ khi:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: D

Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng d1, d2 lần lượt có vectơ chỉ phương là \({\vec a_1}\), \({\vec a_2}\) và một điểm M d1.

Khi đó d1 trùng d2 khi và chỉ khi \({\vec a_1}\) cùng phương với \({\vec a_2}\) và M d2.

Vì vậy cần có cả hai điều kiện của hai phương án A và C.

Vậy ta chọn phương án D.


Câu 2:

21/07/2024

Cho hai đường thẳng ∆1 và ∆2 có phương trình lần lượt là ax + by + c = 0 và dx + ey + f = 0. Xét hệ \(\left\{ \begin{array}{l}ax + by + c = 0\\dx + ey + f = 0\end{array} \right.\). Khi đó ∆1 cắt ∆2 khi và chỉ khi:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Ta có:

1 cắt ∆2 khi và chỉ khi hệ phương trình đã cho có nghiệm duy nhất;

1 // ∆2 khi và chỉ khi hệ phương trình đã cho vô nghiệm;

1 trùng ∆2 khi và chỉ khi hệ phương trình đã cho có vô số nghiệm.

Do đó ta chọn phương án A.


Câu 3:

13/07/2024

Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\]. Kết luận nào sau đây đúng?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Cho đường thẳng d1, d2 có vectơ pháp tuyến lần lượt là \[{\vec n_1} = \left( {a;b} \right),\,\,{\vec n_2} = \left( {c;d} \right)\].

Khi đó ta có \(\cos \left( {{d_1},{d_2}} \right) = \frac{{\left| {{{\vec n}_1}.{{\vec n}_2}} \right|}}{{\left| {{{\vec n}_1}} \right|.\left| {{{\vec n}_2}} \right|}} = \frac{{\left| {ac + bd} \right|}}{{\sqrt {{a^2} + {b^2}} .\sqrt {{c^2} + {d^2}} }}\).

Vậy ta chọn phương án C.


Câu 4:

21/07/2024

Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: B

Ta có \(d\left( {A,d} \right) = \frac{{\left| {2.1 + 3.\left( { - 3} \right) + 5} \right|}}{{\sqrt {{2^2} + {3^2}} }} = \frac{{2\sqrt {13} }}{{13}}\).

Vậy ta chọn phương án B.


Câu 5:

22/11/2024

Góc giữa hai đường thẳng luôn luôn:

Xem đáp án

Đáp án đúng là: C

Lời giải

Gọi α là góc giữa hai đường thẳng.

Góc giữa hai đường thẳng luôn nhỏ hơn hoặc bằng 90°.

Tức là, 0° ≤ α ≤ 90°.

*Phương pháp giải:

Sử dụng định nghĩa góc giữa hai đường thẳng

- Góc giữa hai đường thẳng là góc α được tạo bởi hai đường thẳng d và d’ có số đo 0oα90o. Khi d song song hoặc trùng với d’, ta quy ước góc giữa chúng bằng 0o.

- Góc giữa hai đường thẳng bằng góc giữa hai vectơ chỉ phương hoặc hai vectơ pháp tuyến của chúng.

*Lý thuyết:

1. Góc giữa hai đường thẳng là gì?

- Góc giữa hai đường thẳng là góc α được tạo bởi hai đường thẳng d và d’ có số đo 0oα90o. Khi d song song hoặc trùng với d’, ta quy ước góc giữa chúng bằng 0o.

- Góc giữa hai đường thẳng bằng góc giữa hai vectơ chỉ phương hoặc hai vectơ pháp tuyến của chúng.

2. Cách xác định góc giữa hai đường thẳng

Để xác định góc giữa hai đường thẳng a và b, ta lấy điểm O thuộc 1 trong 2 đương thẳng sau đó vẽ 1 đường thẳng đi qua O và song song với 2 đường còn lại.

Nếu vector u là vector chỉ phương của đường thẳng a, đồng thời vector v là vector chỉ phương của đường thẳng b, góc giữa (u, v) = α thì ta có thể suy ra góc giữa 2 đường thẳng a và b bằng α (0°α90°)

II. Công thức góc giữa hai đường thẳng

- Cho hai đường thẳng d và d’ có vectơ chỉ phương lần lượt là: u=(a;b)  u'=(a';b'). Góc giữa hai đường thẳng được xác định bởi:

cos(d,d')=cos(u,u')=a.a'+b.b'a2+b2.a'2+b'2

- Cho hai đường thẳng d và d’ có vectơ pháp tuyến lần lượt là: n=(a;b)  n'=(a';b'). Góc giữa hai đường thẳng được xác định bởi:

cos(d,d')=cos(n,n')=a.a'+b.b'a2+b2.a'2+b'2

- Gọi k và k’ lần lượt là hệ số góc của hai đường thẳng d và d’. Ta có:

tan(d,d')=kk'1+k.k'

Xem thêm

Công thức tính góc giữa hai đường thẳng (2024) các dạng bài tập và cách giải 


Câu 6:

22/07/2024

Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Nếu \({\vec n_1}.{\vec n_2} = 0\) thì:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có \({\vec n_1}.{\vec n_2} = 0\).

Suy ra \({\vec n_1} \bot {\vec n_2}\).

Do đó ∆1 2.

Vậy ta chọn phương án C.


Câu 7:

22/07/2024

Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng ∆1 và ∆2 có vectơ pháp tuyến lần lượt là \({\vec n_1},\,\,{\vec n_2}\). Khi đó ∆1 cắt ∆2 nhưng không vuông góc với ∆2 khi và chỉ khi:

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: A

Ta có ∆1 cắt ∆2 nhưng không vuông góc với ∆2 khi và chỉ khi \({\vec n_1}\) không cùng phương với \({\vec n_2}\) và \({\vec n_1}.{\vec n_2} \ne 0\).

Vậy ta chọn phương án A.


Bắt đầu thi ngay

Bài thi liên quan


Có thể bạn quan tâm


Các bài thi hot trong chương