Trang chủ Lớp 10 Toán Trắc nghiệm Toán 10 Bài 2. Biểu thức toạ độ của các phép toán vectơ có đáp án

Trắc nghiệm Toán 10 Bài 2. Biểu thức toạ độ của các phép toán vectơ có đáp án

Trắc nghiệm Toán 10 Bài 2. Biểu thức toạ độ của các phép toán vectơ có đáp án

  • 253 lượt thi

  • 15 câu hỏi

  • 30 phút

Danh sách câu hỏi

Câu 1:

15/07/2024

Cho \[\overrightarrow a \] = (2; – 4), \[\overrightarrow b \]= (– 5; 3). Tìm tọa độ của \[\overrightarrow a \] + \[\overrightarrow b \].

Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có :  \[\overrightarrow a \] + \[\overrightarrow b \] = (2 + (– 5); – 4 + 3) = (– 3; – 1).


Câu 2:

12/07/2024
Cho \[\overrightarrow m \] = (3; – 4), \[\overrightarrow n \] = (–1; 2). Tìm tọa độ của vectơ \[\overrightarrow m - \overrightarrow n \].
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : A

Ta có : \[\overrightarrow m - \overrightarrow n \] = (3 – (– 1)); – 4 – 2) = (4; – 6).


Câu 3:

12/07/2024
Cho \[\overrightarrow m \]= (– 1; 2), \[\overrightarrow n \] = (5; – 7). Tìm tọa độ của vectơ \[2\overrightarrow m + \overrightarrow n \].
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Ta có: 2\[\overrightarrow m \]= 2(1; 2) = (2; 4)

2\[\overrightarrow m + \overrightarrow n \] = (– 2 + 5); 4 – 7) = (3; – 3).


Câu 4:

22/07/2024
Trong hệ trục tọa độ M(1; 1), N (1; 1), tọa độ trung điểm I của đoạn thẳng MN là :
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : A

Tọa độ điểm I là nghiệm của hệ phương trình: \(\left\{ \begin{array}{l}{x_I} = \frac{{ - 1 + 1}}{2} = 0\\{y_I} = \frac{{1 + 1}}{2} = 1\end{array} \right. \Rightarrow I\left( {0;1} \right)\).


Câu 5:

12/07/2024
Trong hệ tọa độ Oxy cho \[\overrightarrow k \]= (5 ; 2), \[\overrightarrow n \] = (10 ; 8). Tìm tọa độ của vectơ \[3\overrightarrow k - 2\overrightarrow n \].
Xem đáp án

Hướng dẫn giải

Đáp án đúng là: C

Ta có: 3\[\overrightarrow k \]= 3(5 ; 2) = (15 ; 6) ; 2\[\overrightarrow n \] = 2(10 ; 8) = (20 ; 16)

\[3\overrightarrow k - 2\overrightarrow n \] = (15 – 20 ; 6 – 16) = (5; 10).


Câu 6:

17/07/2024
Trong hệ tọa độ Oxy cho ba điểm A (1; 3) ; B (1; 2) ; C (2 ; 1) . Tìm tọa độ của vectơ \[\overrightarrow {AB} - \overrightarrow {AC} \].
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Ta có \[\left\{ \begin{array}{l}\overrightarrow {AB} = \left( { - 2; - 1} \right)\\\overrightarrow {AC} = \left( { - 3; - 2} \right)\end{array} \right.\] \[ \Rightarrow \]\[\overrightarrow {AB} - \overrightarrow {AC} \] = (– 2 – (– 3); – 1 – (– 2)) = (1; 1).


Câu 7:

23/07/2024
Trong hệ tọa độ Oxy cho hai điểm A (2; –3), I(4; 7). Biết I là trung điểm của đoạn thẳng AB. Tìm tọa độ điểm B.
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Gọi điểm B có tọa độ (x; yB)

Vì I là trung điểm của AB nên ta có :

 \[\left\{ \begin{array}{l}{x_I} = \frac{{2 + {x_B}}}{2} = 4\\{y_I} = \frac{{ - 3 + {y_B}}}{2} = 7\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_I} = 2.4 - 2 = 6\\{y_I} = 2.7 - ( - 3) = 17\end{array} \right.\] \[ \Rightarrow \] B(6; 17).


Câu 8:

21/07/2024
Trong hệ tọa độ Oxy cho tam giác ABC có A (3; 5), B (1; 2), C (5; 2). Tìm tọa độ trọng tâm G của tam giác ABC.
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : D

Gọi toạ độ trọng tâm G (\[{x_G}\]; \[{y_G}\]), ta có :

 \[\left\{ \begin{array}{l}{x_G} = \frac{{3 + 1 + 5}}{3} = 3\\{y_G} = \frac{{5 + 2 + 2}}{3} = 3\end{array} \right.\] \[ \Rightarrow \]G (3; 3).


Câu 9:

15/07/2024
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B (–3 ; 5) và trọng tâm G (–1 ;1). Tìm tọa độ đỉnh C?
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Gọi toạ độ C(x ; y), ta có:

Vì G là trọng tâm tam giác ABC nên : \[\left\{ \begin{array}{l}{x_G} = \frac{{6 + \left( { - 3} \right) + x}}{3} = - 1\\{y_G} = \frac{{1 + 5 + y}}{3} = 1\end{array} \right.\]

\[ \Rightarrow \]\[\left\{ \begin{array}{l}x = - 6\\y = - 3\end{array} \right..\] hay C (6; 3).


Câu 10:

07/12/2024
Trong hệ tọa độ Oxy cho tam giác ABC có M (2; 3), N (0; 4), P (1; 6) lần lượt là trung điểm của các cạnh BC, AC, AB. Tìm tọa độ đỉnh A?
Xem đáp án

Đáp án đúng là: B

Lời giải

Media VietJack

Gọi toạ độ A (x ; y).

Ta có : \[\overrightarrow {PA} \] = (x + 1; y – 6)\[\overrightarrow {MN} \] = (2; 7)

Theo tính chất đường trung bình tam giác, ta có:

\[\overrightarrow {MN} \]= \[\frac{1}{2}\]\[\overrightarrow {AB} \] = \[\overrightarrow {PA} \]

Khi đó (1)\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}x + 1 = - 2\\y - 6 = - 7\end{array} \right.\] \[ \Leftrightarrow \]\[\left\{ \begin{array}{l}x = - 3\\y = - 1\end{array} \right.\]

Hay A (3; 1).

*Phương pháp giải:

Sử dụng tính chất đường trung bình của tam giác : đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh đó.

*Lý thuyết:

1. Đường trung bình của tam giác là gì?

Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.

2. Tính chất đường trung bình của tam giác

Đường trung bình của tam giác song song với cạnh thứ ba và bằng nửa cạnh đó.

Chú ý: Trong một tam giác, nếu một đường thẳng đi qua trung điểm của một cạnh và song song với cạnh thứ hai thì nó đi qua trung điểm của cạnh thứ ba.

Ví dụ:

Đường trung bình của tam giác là gì ? Công thức đường trung bình của tam giác

DE là đường trung bình của tam giác ABC, khi đó DE // BC và DE=12BC.

Xem thêm

Lý thuyết Đường trung bình của tam giác (chính xác nhất) và cách giải các dạng bài tập 

TOP 40 câu Trắc nghiệm Đường trung bình của tam giác, của hình thang (có đáp án 2) - Ton 8 

 

Câu 11:

12/07/2024
Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Xét tam giác ABC, có :

M là trung điểm AB

N là trung điểm AC

Suy ra MN là đường trung bình tam giác ABC

Theo tính chất đường trung bình, ta có :

\[\overrightarrow {MN} = \frac{1}{2}\overrightarrow {BC} \] = \[\frac{1}{2}\].(2; 8) = (1; 4).


Câu 12:

18/07/2024

Trong hệ tọa độ Oxy cho tam giác ABC có C (–2 ; –4), trọng tâm G (0 ; 4) và trung điểm cạnh BC là M (2 ; 0). Tổng hoành độ của điểm A và B là.

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Vì M là trung điểm BC nên ta có : \[\left\{ \begin{array}{l}{x_B} = 2{x_M} - {x_C}\\{y_B} = 2{y_M} - {y_C}\end{array} \right.\]

\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_B} = 2.2 - \left( { - 2} \right) = 6\\{y_B} = 2.0 - \left( { - 4} \right) = 4\end{array} \right.\]\[ \Rightarrow \]B (6; 4).

Vì G là trọng tâm tam giác ABC nên \[\left\{ \begin{array}{l}{x_A} = 3{x_G} - {x_B} - {x_C}\\{y_A} = 3{y_G} - {y_B} - {y_C}\end{array} \right.\]

\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_A} = 3.0 - 6 - ( - 2)\\{y_A} = 3.4 - 4 - ( - 4)\end{array} \right.\]\[ \Leftrightarrow \]\[\left\{ \begin{array}{l}{x_A} = - 4\\{y_A} = 12\end{array} \right.\] hay A (4 ; 12).

Suy ra \[{x_A} + {x_B}\]= 6 + (4) = 2.


Câu 13:

12/07/2024

Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?

Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Vì O là trọng tâm tam giác ABC nên, ta có : \[\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + x + 3 + x}}{3} = 0\\{y_G} = \frac{{2 + 5 + 2y + 3 - y}}{3} = 0\end{array} \right.\]

\[ \Rightarrow \]\[\left\{ \begin{array}{l}x = - \frac{1}{2}\\y = - 10\end{array} \right. \Rightarrow 2.x + y = 2.\left( { - \frac{1}{2}} \right) + \left( { - 10} \right) = - 11\].


Câu 14:

20/07/2024
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B ( –3 ; 5) và trọng tâm G (–1 ; 1). Tìm tọa độ đỉnh C?
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : C

Gọi toạ độ điểm C (x ; y).

Vì G là trọng tâm tam giác ABC nên ta có : \[\left\{ \begin{array}{l}{x_G} = \frac{{6 + \left( { - 3} \right) + x}}{3} = - 1\\{y_G} = \frac{{1 + 5 + y}}{3} = 1\end{array} \right.\]

\[ \Rightarrow \]\[\left\{ \begin{array}{l}x = - 6\\y = - 3\end{array} \right.\] hay C (6; 3).


Câu 15:

12/07/2024
Cho \[\overrightarrow a \] = (2m; 2), \[\overrightarrow b \]= (2; 7n). Tìm giá trị của m và n để tọa độ của vectơ \[\overrightarrow a - \overrightarrow b \] = (6; 5).
Xem đáp án

Hướng dẫn giải

Đáp án đúng là : B

Ta có : \[\overrightarrow a - \overrightarrow b \] = (–2m; 2) – (2; –7n) = (–2m –2; 2 + 7n)

\[\overrightarrow a - \overrightarrow b \] = (6; – 5)

Nên ta có: \(\left\{ \begin{array}{l} - 2m - 2 = 6\\2 + 7n = - 5\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = - 4\\n = - 1\end{array} \right.\)

Vậy m = – 4 và n = – 1.


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương