Trang chủ Lớp 8 Toán Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết)

Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết)

  • 284 lượt thi

  • 10 câu hỏi

  • 50 phút

Danh sách câu hỏi

Câu 1:

17/07/2024

Phân tích đa thức a4 + a3 + a3b + a2b thành nhân tử ta được

Xem đáp án

Ta có a4 + a3 + a3b + a2b

= (a4 + a3) + (a3b + a2b)

= a3(a + 1) + a2b(a + 1)

= (a + 1)(a3 + a2b) = a2(a + b)(a + 1)

Đáp án cần chọn là: A


Câu 2:

17/07/2024

Phân tích đa thức thành nhân tử: 5x2 + 10xy – 4x – 8y

Xem đáp án

5x2 + 10xy – 4x – 8y = (5x2 + 10xy) – (4x + 8y)

= 5x(x + 2y) – 4(x + 2y) = (5x – 4)(x + 2y)

Đáp án cần chọn là: C


Câu 3:

17/07/2024

Đa thức x2 + x – 2ax – 2a được phân tích thành

Xem đáp án

Ta có x2 + x – 2ax – 2a

= (x2 + x) – (2ax + 2a) = x(x + 1) – 2a(x + 1)

= (x – 2a)(x + 1)

Đáp án cần chọn là: B


Câu 4:

17/07/2024

Đa thức 2a2x – 5by – 5a2y + 2bx được phân tích thành

Xem đáp án

Ta có 2a2x – 5by – 5a2y + 2bx

= (2a2x – 5a2y) + (2bx – 5by)

= a2(2x – 5y) + b(2x – 5y)

= (a2 + b)(2x – 5y)

Đáp án cần chọn là: D


Câu 5:

17/07/2024

Cho x2 + ax + x + a = (x + a)(…) Biểu thức thích hợp điền vào dấu … là

Xem đáp án

Ta có x2 + ax + x + a = (x2 + x) + (ax + a)

= x(x + 1) + a(x + 1) = (x + a)(x + 1)

Đáp án cần chọn là: A


Câu 6:

22/07/2024

Điền vào chỗ trống: 3x2 + 6xy2 – 3y2 + 6x2y = 3(…)(x + y)

Xem đáp án

3x2 + 6xy2 – 3y2 + 6x2y = (3x2 – 3y2) + (6xy2 + 6x2y)

= 3(x2 – y2) + 6xy(y + x) = 3(x – y)(x + y) + 6xy(x + y)

= [3(x – y) + 6xy](x + y) = 3(x – y + 2xy)(x + y)

Vậy chỗ trống là (x – y + 2xy)

Đáp án cần chọn là: B


Câu 7:

23/07/2024

Chọn câu đúng

Xem đáp án

Ta có x3 – 4x2 – 9x + 36

= (x3 – 4x2) – (9x – 36)

= x2(x – 4) – 9(x – 4) = (x2 – 9)(x – 4)

= (x – 3)(x + 3)(x – 4)

Đáp án cần chọn là: B


Câu 8:

17/07/2024

Chọn câu đúng

Xem đáp án

Ta có 2a2c2 – 2abc + bd – acd = 2ac(ac – b) + d(b – ac)

          = 2ac(ac – b) – d(ac – b) = (2ac – d)(ac – b)

Đáp án cần chọn là: A


Câu 9:

18/07/2024

Chọn câu sai

Xem đáp án

Ta có

ax – bx + ab – x2 = (ax – x2) + (ab – bx)

= x(a – x) + b(a – x) = (x + b)(a – x) nên A đúng

x2 – y2 + 4x + 4 = (x2 + 4x + 4) – y2

= (x + 2)2 – y2 = (x + 2 + y)(x + 2 – y) nên B sai

ax + ay – 3x – 3y = a(x + y) – 3(x + y)

= (a – 3)(x + y) nên C đúng

xy + 1 – x – y = (xy – x) + (1 – y)

= x(y – 1) – (y – 1) = (x – 1)(y – 1) nên D đúng

Đáp án cần chọn là: B


Câu 10:

17/07/2024

Cho ab3c2 – a2b2c3 + ab2c3 – a2bc3 = abc2(b + c)(…) Biểu thức thích hợp điền vào dấu … là

Xem đáp án

Ta có ab3c2 – a2b2c2 + ab2c3 – a2bc3

= abc2(b2 – ab + bc – ac)

= abc2[(b2 – ab) + (bc – ac)]

= abc2[b(b – a) + c(b – a)]

= abc2(b + c)(b – a)

Vậy ta cần điền b – a

Đáp án cần chọn là: A


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương