Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết)
Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết)
-
283 lượt thi
-
10 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
17/07/2024Phân tích đa thức a4 + a3 + a3b + a2b thành nhân tử ta được
Ta có a4 + a3 + a3b + a2b
= (a4 + a3) + (a3b + a2b)
= a3(a + 1) + a2b(a + 1)
= (a + 1)(a3 + a2b) = a2(a + b)(a + 1)
Đáp án cần chọn là: A
Câu 2:
17/07/2024Phân tích đa thức thành nhân tử: 5x2 + 10xy – 4x – 8y
5x2 + 10xy – 4x – 8y = (5x2 + 10xy) – (4x + 8y)
= 5x(x + 2y) – 4(x + 2y) = (5x – 4)(x + 2y)
Đáp án cần chọn là: C
Câu 3:
17/07/2024Đa thức x2 + x – 2ax – 2a được phân tích thành
Ta có x2 + x – 2ax – 2a
= (x2 + x) – (2ax + 2a) = x(x + 1) – 2a(x + 1)
= (x – 2a)(x + 1)
Đáp án cần chọn là: B
Câu 4:
17/07/2024Đa thức 2a2x – 5by – 5a2y + 2bx được phân tích thành
Ta có 2a2x – 5by – 5a2y + 2bx
= (2a2x – 5a2y) + (2bx – 5by)
= a2(2x – 5y) + b(2x – 5y)
= (a2 + b)(2x – 5y)
Đáp án cần chọn là: D
Câu 5:
17/07/2024Cho x2 + ax + x + a = (x + a)(…) Biểu thức thích hợp điền vào dấu … là
Ta có x2 + ax + x + a = (x2 + x) + (ax + a)
= x(x + 1) + a(x + 1) = (x + a)(x + 1)
Đáp án cần chọn là: A
Câu 6:
22/07/2024Điền vào chỗ trống: 3x2 + 6xy2 – 3y2 + 6x2y = 3(…)(x + y)
3x2 + 6xy2 – 3y2 + 6x2y = (3x2 – 3y2) + (6xy2 + 6x2y)
= 3(x2 – y2) + 6xy(y + x) = 3(x – y)(x + y) + 6xy(x + y)
= [3(x – y) + 6xy](x + y) = 3(x – y + 2xy)(x + y)
Vậy chỗ trống là (x – y + 2xy)
Đáp án cần chọn là: B
Câu 7:
23/07/2024Chọn câu đúng
Ta có x3 – 4x2 – 9x + 36
= (x3 – 4x2) – (9x – 36)
= x2(x – 4) – 9(x – 4) = (x2 – 9)(x – 4)
= (x – 3)(x + 3)(x – 4)
Đáp án cần chọn là: B
Câu 8:
17/07/2024Chọn câu đúng
Ta có 2a2c2 – 2abc + bd – acd = 2ac(ac – b) + d(b – ac)
= 2ac(ac – b) – d(ac – b) = (2ac – d)(ac – b)
Đáp án cần chọn là: A
Câu 9:
18/07/2024Chọn câu sai
Ta có
ax – bx + ab – x2 = (ax – x2) + (ab – bx)
= x(a – x) + b(a – x) = (x + b)(a – x) nên A đúng
x2 – y2 + 4x + 4 = (x2 + 4x + 4) – y2
= (x + 2)2 – y2 = (x + 2 + y)(x + 2 – y) nên B sai
ax + ay – 3x – 3y = a(x + y) – 3(x + y)
= (a – 3)(x + y) nên C đúng
xy + 1 – x – y = (xy – x) + (1 – y)
= x(y – 1) – (y – 1) = (x – 1)(y – 1) nên D đúng
Đáp án cần chọn là: B
Câu 10:
17/07/2024Cho ab3c2 – a2b2c3 + ab2c3 – a2bc3 = abc2(b + c)(…) Biểu thức thích hợp điền vào dấu … là
Ta có ab3c2 – a2b2c2 + ab2c3 – a2bc3
= abc2(b2 – ab + bc – ac)
= abc2[(b2 – ab) + (bc – ac)]
= abc2[b(b – a) + c(b – a)]
= abc2(b + c)(b – a)
Vậy ta cần điền b – a
Đáp án cần chọn là: A
Có thể bạn quan tâm
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử (có đáp án) (289 lượt thi)
- Bài tập Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử (có lời giải chi tiết) (311 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Nhận biết) (282 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Thông hiểu) (247 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp nhóm hạng tử có đáp án (Vận dụng) (250 lượt thi)
- Bài tập Phối hợp nhiều phương pháp phân tích đa thức thành nhân tử (có lời giải chi tiết) (285 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (Nhận biết) (304 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Nhân đơn thức với đa thức (có đáp án) (1059 lượt thi)
- Bài tập: Phân tích đa thức thành nhân tử (có lời giải chi tiết) (766 lượt thi)
- Trắc nghiệm Những hằng đẳng thức đáng nhớ (có đáp án) (532 lượt thi)
- Bài tập Nhân đơn thức với đa thức (có lời giải chi tiết) (470 lượt thi)
- Trắc nghiệm Chia đơn thức cho đơn thức (có đáp án) (466 lượt thi)
- Bài tập Chia đa thức một biến đã sắp xếp (456 lượt thi)
- Trắc nghiệm Chia đa thức cho một biến đã sắp xếp (có đáp án) (399 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng phương pháp đặt nhân tử chung (có đáp án) (373 lượt thi)
- Trắc nghiệm Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp (có đáp án) (356 lượt thi)
- Trắc nghiệm Chia đa thức cho đơn thức (có đáp án) (347 lượt thi)