Trang chủ Lớp 12 Toán 52 câu trắc nghiệm: Khái niệm về mặt tròn xoay có đáp án

52 câu trắc nghiệm: Khái niệm về mặt tròn xoay có đáp án

52 câu trắc nghiệm: Khái niệm về mặt tròn xoay có đáp án

  • 352 lượt thi

  • 104 câu hỏi

  • 90 phút

Danh sách câu hỏi

Câu 1:

13/07/2024

Tam giác ABC vuông cân đỉnh A có cạnh huyền là a. Quay tam giác ABC quanh trục AB thì đoạn gấp khúc ACB tạo thành hình nón (N). Diện tích xung quanh của hình nón (N) là:

Xem đáp án

Đáp án C

Theo cách xây dựng hình nón ta có đường sinh của hình nón là: l = BC = a.

Bán kính đáy của hình nón là: r = AC = BC.sin45o = a/2

Vậy ta có diện tích xung quanh của hình nón (N) là:


Câu 2:

13/07/2024

Tam giác ABC vuông cân đỉnh A có cạnh huyền là a. Quay tam giác ABC quanh trục AB thì đoạn gấp khúc ACB tạo thành hình nón (N). Diện tích xung quanh của hình nón (N) là:

Xem đáp án

Đáp án C

Theo cách xây dựng hình nón ta có đường sinh của hình nón là: l = BC = a.

Bán kính đáy của hình nón là: r = AC = BC.sin45o = a/2

Vậy ta có diện tích xung quanh của hình nón (N) là:


Câu 3:

13/07/2024

Hình nón (N) có đường sinh gấp hai lần bán kính đáy. Góc ở đỉnh của hình nón là:

Xem đáp án

Đáp án B

Từ giả thiết ta có l = 2r.

Gọi 2α là góc ở đỉnh của hình nón, khi đó ta có:

Vậy góc ở đỉnh của hình nón là 60o.


Câu 4:

17/07/2024

Hình nón (N) có đường sinh gấp hai lần bán kính đáy. Góc ở đỉnh của hình nón là:

Xem đáp án

Đáp án B

Từ giả thiết ta có l = 2r.

Gọi 2α là góc ở đỉnh của hình nón, khi đó ta có:

Vậy góc ở đỉnh của hình nón là 60o.


Câu 9:

13/07/2024

Cho hình trụ có được khi quay hình chữ nhật ABCD quanh trục AB. Biết rằng AB = 2AD = 2a. Thể tích khối trụ đã cho theo a là:

Xem đáp án

Đáp án A

Từ giả thiết ta có h = AB = 2a, r = AD = a. Khi đó ta có thể tích khối trụ là: V = πr2h = 2πa3.


Câu 10:

13/07/2024

Cho hình trụ có được khi quay hình chữ nhật ABCD quanh trục AB. Biết rằng AB = 2AD = 2a. Thể tích khối trụ đã cho theo a là:

Xem đáp án

Đáp án A

Từ giả thiết ta có h = AB = 2a, r = AD = a. Khi đó ta có thể tích khối trụ là: V = πr2h = 2πa3.


Câu 17:

15/07/2024

Cho hình trụ có bán kính đáy bằng a và diện tích toàn phần 6πa2. Diện tích của thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua các trục của hình trụ là:

Xem đáp án

Đáp án C

Từ giả thiết ta có:

Thiết diện đã cho là một hình chữ nhật có các cạnh lần lượt là h và 2r. Khi đó ta có diện tích thiết diện là : S = 2rh = 4a2.


Câu 18:

23/07/2024

Cho hình trụ có bán kính đáy bằng a và diện tích toàn phần 6πa2. Diện tích của thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua các trục của hình trụ là:

Xem đáp án

Đáp án C

Từ giả thiết ta có:

Thiết diện đã cho là một hình chữ nhật có các cạnh lần lượt là h và 2r. Khi đó ta có diện tích thiết diện là : S = 2rh = 4a2.


Câu 27:

22/07/2024

Hình nón (N) có đường sinh gấp hai lần đường cao. Góc ở đỉnh của hình nón là:

Xem đáp án

Đáp án A

Gọi 2α là góc ở đỉnh của hình nón. Từ giả thiết ta có:


Câu 28:

13/07/2024

Hình nón (N) có đường sinh gấp hai lần đường cao. Góc ở đỉnh của hình nón là:

Xem đáp án

Đáp án A

Gọi 2α là góc ở đỉnh của hình nón. Từ giả thiết ta có:


Câu 31:

23/07/2024

Hình nón có góc ở đỉnh là 90o và có diện tích xung quanh là π2. Độ dài đường cao của hình nón là:

Xem đáp án

Đáp án A

Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.


Câu 32:

13/07/2024

Hình nón có góc ở đỉnh là 90o và có diện tích xung quanh là π2. Độ dài đường cao của hình nón là:

Xem đáp án

Đáp án A

Gọi S là đỉnh hình nón, O là tâm đáy, A là một điểm thuộc đường tròn đáy.


Câu 35:

13/07/2024

Cho khối nón tròn xoay có đường cao h = 20cm và đường sinh l = 25cm. Thể tích khối nón là:

Xem đáp án

Đáp án A

Từ giả thiết ta có:


Câu 36:

17/07/2024

Cho khối nón tròn xoay có đường cao h = 20cm và đường sinh l = 25cm. Thể tích khối nón là:

Xem đáp án

Đáp án A

Từ giả thiết ta có:


Câu 41:

15/07/2024

Cho một hình trụ có bán kính đáy R, chiều cao h và thể tích V1; một hình nón có đáy trùng với một đáy của hình trụ, có đỉnh trùng với tâm đáy còn lại của hình trụ (hình vẽ bên dưới) và có thể tích V2.

Khẳng định nào sau đây là khẳng định đúng ?

Xem đáp án

Đáp án C

Hình trụ có bán kính đáy R và chiều cao h nên thể tích V1 = πR2h.

Hình nón có bán kính đáy R và chiều cao h nên thể tích V2 = 1/3 πR2h.

Từ đó suy ra V1 = 3V2.


Câu 42:

19/07/2024

Cho một hình trụ có bán kính đáy R, chiều cao h và thể tích V1; một hình nón có đáy trùng với một đáy của hình trụ, có đỉnh trùng với tâm đáy còn lại của hình trụ (hình vẽ bên dưới) và có thể tích V2.

Khẳng định nào sau đây là khẳng định đúng ?

Xem đáp án

Đáp án C

Hình trụ có bán kính đáy R và chiều cao h nên thể tích V1 = πR2h.

Hình nón có bán kính đáy R và chiều cao h nên thể tích V2 = 1/3 πR2h.

Từ đó suy ra V1 = 3V2.


Câu 45:

13/07/2024

Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ một góc 45°. Tính thể tích của khối trụ.

Xem đáp án

Đáp án D

Gọi M, N lần lượt là trung điểm AB và CD.

Khi đó OM AB và ON CD

Gọi I là giao điểm của MN và OO’

Đặt R = OA và h = OO’. Khi đó ΔIOM vuông cân tại O nên:


Câu 46:

20/07/2024

Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ một góc 45°. Tính thể tích của khối trụ.

Xem đáp án

Đáp án D

Gọi M, N lần lượt là trung điểm AB và CD.

Khi đó OM AB và ON CD

Gọi I là giao điểm của MN và OO’

Đặt R = OA và h = OO’. Khi đó ΔIOM vuông cân tại O nên:


Câu 47:

13/07/2024

Cho khối trụ có bán kính đáy 4m và đường cao là 5m. Thể tích khối trụ là:

Xem đáp án

Đáp án C

Từ giả thiết ta có: V = πr2h = π42.5 = 80π(m3)


Câu 48:

13/07/2024

Cho khối trụ có bán kính đáy 4m và đường cao là 5m. Thể tích khối trụ là:

Xem đáp án

Đáp án C

Từ giả thiết ta có: V = πr2h = π42.5 = 80π(m3)


Câu 51:

13/07/2024

Tính thể tích của khối trụ biết chu vi đáy của hình trụ đó bằng 6π (cm) và thiết diện đi qua trục là một hình chữ nhật có độ dài đường chéo bằng 10 (cm).

Xem đáp án

Đáp án C

Gọi O, O' là hai tâm của đáy hình trụ và thiết diện qua trục là hình chữ nhật ABCD.

Do chu vi đáy của hình trụ đó bằng 6π nên bán kính đáy của hình trụ là


Câu 52:

19/07/2024

Tính thể tích của khối trụ biết chu vi đáy của hình trụ đó bằng 6π (cm) và thiết diện đi qua trục là một hình chữ nhật có độ dài đường chéo bằng 10 (cm).

Xem đáp án

Đáp án C

Gọi O, O' là hai tâm của đáy hình trụ và thiết diện qua trục là hình chữ nhật ABCD.

Do chu vi đáy của hình trụ đó bằng 6π nên bán kính đáy của hình trụ là


Câu 53:

15/07/2024

Cho hình trụ có diện tích toàn phần 6πa2 và thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua trục là một hình vuông. Chiều cao của hình trụ là:

Xem đáp án

Đáp án D

Vì thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua trục là một hình vuông nên: h = 2r


Câu 54:

13/07/2024

Cho hình trụ có diện tích toàn phần 6πa2 và thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua trục là một hình vuông. Chiều cao của hình trụ là:

Xem đáp án

Đáp án D

Vì thiết diện của hình trụ cắt bởi mặt phẳng (P) đi qua trục là một hình vuông nên: h = 2r


Câu 61:

15/07/2024

Hình trụ (H) có diện tích toàn phần là 8π(cm2) và thể tích khối trụ là 3π(cm3). Tính chiều cao của hình trụ ta được bao nhiêu kết quả?

Xem đáp án

Đáp án B

Từ giả thiết ta có:

Do r > 0 nên ta có 2 giá trị r thỏa mãn hay có hai hình nón thỏa mãn đề bài


Câu 62:

13/07/2024

Hình trụ (H) có diện tích toàn phần là 8π(cm2) và thể tích khối trụ là 3π(cm3). Tính chiều cao của hình trụ ta được bao nhiêu kết quả?

Xem đáp án

Đáp án B

Từ giả thiết ta có:

Do r > 0 nên ta có 2 giá trị r thỏa mãn hay có hai hình nón thỏa mãn đề bài


Câu 67:

16/07/2024

Cho hình nón có đường cao h = 10cm và thiết diện cắt bởi mặt phẳng qua trục của hình nón là một tam giác đều. Diện tích xung quanh của hình nón là:

Xem đáp án

Đáp án B

Từ giả thiết ta có thiết diện là tam giác đều cạnh 2r và đường cao h nên ta có:


Câu 68:

22/07/2024

Cho hình nón có đường cao h = 10cm và thiết diện cắt bởi mặt phẳng qua trục của hình nón là một tam giác đều. Diện tích xung quanh của hình nón là:

Xem đáp án

Đáp án B

Từ giả thiết ta có thiết diện là tam giác đều cạnh 2r và đường cao h nên ta có:


Câu 70:

03/11/2024

Một hình nón có đường sinh bằng đường kính đáy. Diện tích xung quanh của hình nón bằng 9π. Tính đường cao h của hình nón.

Xem đáp án

Đáp án đúng: A

*Lời giải

*Phương pháp giải

- Áp dụng công thức tính S xung quanh của hình nón: Sxq = pi.r.l

Thay dữ kiện đề bài cho vào để tính toán

*Lý thuyến cần nắm về hình nón:

Hình nón là hình được tạo ra khi quay tam giác vuông một vòng quanh một góc vuông cố định.

Công thức tính diện tích xung quanh, diện tích toàn phần hình nón (2024) chính xác nhất (ảnh 1)

- Mặt đáy: là mặt phẳng có hình dạng hình chọn của hình nón.

- Đường cao: là khoảng cách từ tâm mặt đáy đến đỉnh của hình chóp hay được gọi là đường cao hạ từ đỉnh xuống tâm đáy hình nón. Được ký hiệu là: h.

- Đường sinh: là khoảng cách từ một điểm bất kỳ trên đường tròn đấy đến đỉnh của hình chóp. Được ký hiệu là: l.

- Bán kính đáy: là khoảng cách từ tâm đến một điểm trên hình tròn của mặt phẳng đáy. Được ký hiệu là: r.

1. Công thức tính diện tích đáy

- Đáy hình nón là hình tròn nên 

2. Công thức tính diện tích xung quanh hình nón

Cho hình nón có bán kính đáy r và độ dài đường sinh l.

Công thức tính diện tích hình nón đầy đủ nhất ( diện tích xung quanh, toàn phần, đáy) - Toán lớp 12 (ảnh 1)

Khi đó:

Sxq = π.r.l

3. Công thức tính diện tích toàn phần hình nón

Cho hình nón có bán kính r, chiều cao h và đường sinh l

Công thức tính diện tích hình nón đầy đủ nhất ( diện tích xung quanh, toàn phần, đáy) - Toán lớp 12 (ảnh 1)

Diện tích toàn phần:

 

Xem thêm các bài viết liên quan hay, chi tiết:

Công thức tính diện tích xung quanh, diện tích toàn phần hình nón (2024) chính xác nhất

50 bài toán về mặt nón và phương pháp giải bài tập (có đáp án 2024) – Toán 12

  •  

Câu 75:

17/07/2024

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = a, AB' = 2a. Diện tích toàn phần của hình trụ ngoại tiếp hình hộp là:

Xem đáp án

Đáp án A

Xét tam giác vuông ABB’ ta có:

Hình trụ ngoại tiếp hình hộp đã cho có chiều cao h = AA’= BB’

Đáy hình trụ là đường tròn ngoại tiếp tứ giác ABCD và A’B’C’D’

Ta có:


Câu 76:

22/07/2024

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = a, AB' = 2a. Diện tích toàn phần của hình trụ ngoại tiếp hình hộp là:

Xem đáp án

Đáp án A

Xét tam giác vuông ABB’ ta có:

Hình trụ ngoại tiếp hình hộp đã cho có chiều cao h = AA’= BB’

Đáy hình trụ là đường tròn ngoại tiếp tứ giác ABCD và A’B’C’D’

Ta có:


Câu 77:

11/10/2024

Cho hình nón đỉnh S, đường cao SO. Gọi A và B là hai điểm thuộc đường tròn đáy của hình nón sao cho khoảng cách từ O đến AB bằng 2 và . Tính diện tích xung quanh hình nón ?

Xem đáp án

Đáp án đúng: A

* Phương pháp giải:

Cho hình nón có bán kính đáy r và độ dài đường sinh l. Khi đó: Sxq = π.r.l

* Lời giải:

* Một số kiến thức cần nhớ về công thức tính diện tích hình nón:

Hình nón là hình được tạo ra khi quay tam giác vuông một vòng quanh một góc vuông cố định.

Công thức tính diện tích xung quanh, diện tích toàn phần hình nón (2024) chính xác nhất (ảnh 1)

- Mặt đáy: là mặt phẳng có hình dạng hình chọn của hình nón.

- Đường cao: là khoảng cách từ tâm mặt đáy đến đỉnh của hình chóp hay được gọi là đường cao hạ từ đỉnh xuống tâm đáy hình nón. Được ký hiệu là: h.

- Đường sinh: là khoảng cách từ một điểm bất kỳ trên đường tròn đấy đến đỉnh của hình chóp. Được ký hiệu là: l.

- Bán kính đáy: là khoảng cách từ tâm đến một điểm trên hình tròn của mặt phẳng đáy. Được ký hiệu là: r.

- Diện tích xung quanh: Sxq = π.r.l

- Diện tích toàn phần: Stp=Sxq+Sd=πrl+πr2=πrl+r

- Thể tích hình nón bằng diện tích mặt đáy nhân với chiều cao: V = π.r2.h

Xem thêm các bài viết liên quan hay, chi tiết:

TOP 40 câu Trắc nghiệm Khái niệm về mặt tròn xoay (có đáp án 2024) - Toán 12

50 bài toán về mặt nón và phương pháp giải bài tập (có đáp án 2024) – Toán 12 

Chuyên đề Khái niệm về mặt tròn xoay (2022) - Toán 12 


Câu 83:

03/12/2024

Một hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích xung quanh của hình nón bằng

Xem đáp án

Đáp án đúng là B

Lời giải

Giả sử SAB là thiết diện qua trục của hình nón (như hình vẽ)

Tam giác SAB cân tại S và là tam giác cân nên SA = SB = a

Do đó:

*Phương pháp giải:

- Dựa vào tính chất tam giác vuông cân xác định chiều cao và bán kính đáy của hình nón.

- Khối nón có đường sinh là l, bán kính đáy r  diện tích xung quanh: Sxq = πRl

*Lý thuyết:

Khi quay tam giác vuông AOC một vòng quanh cạnh OA cố định thì được một hình nón.

    + Điểm A được gọi đỉnh của hình nón.

    + Hình tròn (O) được gọi là đáy của hình nón.

    + Mỗi vị trí của AC được gọi là một đường sinh của hình nón.

    + Đoạn AO được gọi là đường cao của hình nón.

Lý thuyết Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt - Lý thuyết Toán lớp 9 đầy đủ nhất

2. Diện tích – thể tích của hình nón

Đặt AC = l; l là đường sinh

Cho hình nón có bán kính đáy R và đường sinh l, chiều cao h.

    + Diện tích xung quanh: Sxq = πRl

    + Diện tích toàn phần: Stp = πRl + πR2

    + Thể tích:Lý thuyết Hình nón - Hình nón cụt - Diện tích xung quanh và thể tích của hình nón, hình nón cụt - Lý thuyết Toán lớp 9 đầy đủ nhất

Xem thêm

Chuyên đề Hình nón – Hình nón cụt. Diện tích xung quanh và thể tích của hình nón, hình nón cụt () - Toán 9 


Câu 84:

20/07/2024

Một hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích xung quanh của hình nón bằng

Xem đáp án

Đáp án B

Giả sử SAB là thiết diện qua trục của hình nón (như hình vẽ)

Tam giác SAB cân tại S và là tam giác cân nên SA = SB = a

Do đó:


Câu 87:

20/07/2024

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60°. Tính diện tích xung quanh và thể tích của hình nón có đỉnh S và đáy là đường tròn ngoại tiếp đáy hình chóp S.ABCD. Khi đó diện tích xung quanh và thể tích của hình nón bằng

Xem đáp án

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)


Câu 88:

21/07/2024

Cho hình chóp đều S.ABCD có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 60°. Tính diện tích xung quanh và thể tích của hình nón có đỉnh S và đáy là đường tròn ngoại tiếp đáy hình chóp S.ABCD. Khi đó diện tích xung quanh và thể tích của hình nón bằng

Xem đáp án

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)


Câu 89:

13/07/2024

Một người xây nhà phải xây bốn cái cột hình trụ cùng kích cỡ, bán kính đáy các cột là 25cm. Biết rằng tổng thể tích vật liệu (chính là tổng thể tích bốn khối trụ) là 3m3. Chiều cao của mỗi cột là:

Xem đáp án

Đáp án C

Từ giả thiết đề bài ta có tổng thể tích của bốn khối trụ là 3m3 và bán kính đáy của mỗi khối trụ là r = 25cm = 0,25m.

Gọi h là chiều cao của các khối trụ ta có:


Câu 90:

21/07/2024

Một người xây nhà phải xây bốn cái cột hình trụ cùng kích cỡ, bán kính đáy các cột là 25cm. Biết rằng tổng thể tích vật liệu (chính là tổng thể tích bốn khối trụ) là 3m3. Chiều cao của mỗi cột là:

Xem đáp án

Đáp án C

Từ giả thiết đề bài ta có tổng thể tích của bốn khối trụ là 3m3 và bán kính đáy của mỗi khối trụ là r = 25cm = 0,25m.

Gọi h là chiều cao của các khối trụ ta có:


Câu 91:

14/07/2024

Một hộp đứng bóng bàn hình trụ có chiều cao 30cm, bán kính 2,5cm. Vận động viên để các quả bóng bàn có bán kính 2,5cm vao hộp. Hỏi vận động viên có thể để được nhiều nhất bao nhiêu quả bóng bàn trong các kết quả sau?

Xem đáp án

Đáp án B

Do bán kính của một quả bóng bàn hình cầu bằng bán kính hình trụ nên mỗi lần ta chỉ đặt được một quả bóng bàn vào hình trụ. Khi đó do mỗi quả bóng bàn chiếm chiều cao là 2,5x2=5cm nên với hình trụ cao 30cm thì đựng được nhiều nhất là 6 quả bóng bàn.


Câu 92:

20/07/2024

Một hộp đứng bóng bàn hình trụ có chiều cao 30cm, bán kính 2,5cm. Vận động viên để các quả bóng bàn có bán kính 2,5cm vao hộp. Hỏi vận động viên có thể để được nhiều nhất bao nhiêu quả bóng bàn trong các kết quả sau?

Xem đáp án

Đáp án B

Do bán kính của một quả bóng bàn hình cầu bằng bán kính hình trụ nên mỗi lần ta chỉ đặt được một quả bóng bàn vào hình trụ. Khi đó do mỗi quả bóng bàn chiếm chiều cao là 2,5x2=5cm nên với hình trụ cao 30cm thì đựng được nhiều nhất là 6 quả bóng bàn.


Câu 95:

23/07/2024

Cho hình trụ có bán kính đáy 10cm và đường cao là 15cm. ta để một thước thẳng có chiều dài l vào trong hình trụ. Khi đó trong các kết quả sau l có thể nhận giá trị lớn nhất là:

Xem đáp án

Đáp án B

Để một chiếc thước thẳng có thể nằm trong một hình trụ thì độ dài của nó không thể vượt quá được độ dài đường chéo của hình chữ nhật là thiết diện của hình trụ cắt bởi mặt phẳng qua trục của hình trụ. Do đó độ dài thước không vượt quá: 


Câu 96:

20/07/2024

Cho hình trụ có bán kính đáy 10cm và đường cao là 15cm. ta để một thước thẳng có chiều dài l vào trong hình trụ. Khi đó trong các kết quả sau l có thể nhận giá trị lớn nhất là:

Xem đáp án

Đáp án B

Để một chiếc thước thẳng có thể nằm trong một hình trụ thì độ dài của nó không thể vượt quá được độ dài đường chéo của hình chữ nhật là thiết diện của hình trụ cắt bởi mặt phẳng qua trục của hình trụ. Do đó độ dài thước không vượt quá: 


Câu 97:

13/07/2024

Cho lăng trụ đứng ABCD.A'B'C'D có đáy ABCD là hình thang, AB = AD = a, CD = 2a. Đường thẳng A’C tạo với mặt phẳng (ABCD) một góc bằng 60o. Biết hình lăng trụ nội tiếp một hình trụ. Tính thể tích khối trụ ngoại tiếp lăng trụ theo a ta được:

Xem đáp án

Đáp án A

Từ giả thiết ta có hình thang ABCD là hình thang nội tiếp được đường tròn nên nó là hình thang cân AB = AD = BC = a

Khi đó tâm đường tròn ngoại tiếp hình thang ABCD là trung điểm I của CD và bán kính là r = a.

Ta có:

=> A'A = a3.3 = 3a => V = 3πa3


Câu 98:

20/07/2024

Cho lăng trụ đứng ABCD.A'B'C'D có đáy ABCD là hình thang, AB = AD = a, CD = 2a. Đường thẳng A’C tạo với mặt phẳng (ABCD) một góc bằng 60o. Biết hình lăng trụ nội tiếp một hình trụ. Tính thể tích khối trụ ngoại tiếp lăng trụ theo a ta được:

Xem đáp án

Đáp án A

Từ giả thiết ta có hình thang ABCD là hình thang nội tiếp được đường tròn nên nó là hình thang cân AB = AD = BC = a

Khi đó tâm đường tròn ngoại tiếp hình thang ABCD là trung điểm I của CD và bán kính là r = a.

Ta có:

=> A'A = a3.3 = 3a => V = 3πa3


Câu 99:

19/07/2024

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo một thiết diện có chu vi bằng 7a. Thể tích khối nón có đỉnh S và đường tròn đáy ngoại tiếp ABCD là:

Xem đáp án

Đáp án D

Do AB // CD nên mặt phẳng (ABM) cắt mặt phẳng (SCD) theo một giao tuyến đi qua M và song song với CD, giao tuyến đó cắt SD tại N. Suy ra N là trung điểm của SD. Từ giả thiết ta có:

Áp dụng công thức đường trung tuyến trong tam giác SBC ta có:

Khối nón đã cho có:


Câu 100:

18/07/2024

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng 2a. Mặt phẳng qua AB và trung điểm M của SC cắt hình chóp theo một thiết diện có chu vi bằng 7a. Thể tích khối nón có đỉnh S và đường tròn đáy ngoại tiếp ABCD là:

Xem đáp án

Đáp án D

Do AB // CD nên mặt phẳng (ABM) cắt mặt phẳng (SCD) theo một giao tuyến đi qua M và song song với CD, giao tuyến đó cắt SD tại N. Suy ra N là trung điểm của SD. Từ giả thiết ta có:

Áp dụng công thức đường trung tuyến trong tam giác SBC ta có:

Khối nón đã cho có:


Câu 101:

23/07/2024

Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h = 3 và góc SAB^ = α = 60°. Tính diện tích xung quanh của hình nón đỉnh S đáy là đường tròn ngoại tiếp tứ giác ABCD

Xem đáp án

Đáp án A

Đặt r = OA, SO = h, SA = SB = SC = l là đường sinh của hình nón.

Gọi I là trung điểm của đoạn AB.


Câu 102:

22/07/2024

Cho hình chóp tứ giác đều S.ABCD có chiều cao SO = h = 3 và góc SAB^ = α = 60°. Tính diện tích xung quanh của hình nón đỉnh S đáy là đường tròn ngoại tiếp tứ giác ABCD

Xem đáp án

Đáp án A

Đặt r = OA, SO = h, SA = SB = SC = l là đường sinh của hình nón.

Gọi I là trung điểm của đoạn AB.


Câu 103:

15/07/2024

Cho hình trụ có đường cao h và bán kính đáy là r. Trong các khối lăng trụ tứ giác nội tiếp hình trụ thì khối lăng trụ có thể tích lớn nhất bằng:

Xem đáp án

Đáp án B

Gọi ABCD.A'B'C'D' là hình lăng trụ nội tiếp hình trụ. Khi đó lăng trụ đã cho là lăng trụ đứng và có chiều cao là chiều cao h của hình trụ. Vậy thể tích khối lăng trụ đạt giá trị lớn nhất khi và chỉ khi diện tích đáy ABCD đạt giá trị lớn nhất. Do ABCD nội tiếp đường tròn đáy của hình trụ nên ta có:

Dấu bằng xảy ra khi ABCD là hình vuông. Vậy thể tích khối lăng trụ tứ giác nội tiếp hình trụ lớn nhất là V = 2r2h

 


Câu 104:

14/07/2024

Cho hình trụ có đường cao h và bán kính đáy là r. Trong các khối lăng trụ tứ giác nội tiếp hình trụ thì khối lăng trụ có thể tích lớn nhất bằng:

Xem đáp án

Đáp án B

Gọi ABCD.A'B'C'D' là hình lăng trụ nội tiếp hình trụ. Khi đó lăng trụ đã cho là lăng trụ đứng và có chiều cao là chiều cao h của hình trụ. Vậy thể tích khối lăng trụ đạt giá trị lớn nhất khi và chỉ khi diện tích đáy ABCD đạt giá trị lớn nhất. Do ABCD nội tiếp đường tròn đáy của hình trụ nên ta có:

Dấu bằng xảy ra khi ABCD là hình vuông. Vậy thể tích khối lăng trụ tứ giác nội tiếp hình trụ lớn nhất là V = 2r2h

 


Bắt đầu thi ngay


Có thể bạn quan tâm


Các bài thi hot trong chương