Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ

Lời giải bài 1 trang 129 SBT Toán 10 Tập 1 sách Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng làm bài tập trong SBT Toán lớp 10 Tập 1.

1 716 09/12/2022


Giải SBT Toán lớp 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

Bài 1 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ (nếu có) của mỗi mẫu số liệu sau:

a) 90; 56; 50; 45; 46; 48; 52; 43.

b) 19; 11; 1; 16; 19; 12; 14; 10; 11.

c) 6,7; 6,2; 9,7; 6,3; 6,8; 6,1; 6,2.

d) 0,79; 0,68; 0,35; 0,38; 0,05; 0,35.

Lời giải:

a) Ta có: n = 8.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Sắp xếp mẫu số liệu theo thứ tự không giảm:

43; 45; 46; 48; 50; 52; 56; 90

Khi đó, khoảng biến thiên R = 90 – 43 = 47.

Vì n = 8 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (48 + 50) : 2 = 49.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 43; 45; 46; 48.

Vậy Q1 = (45 + 46) : 2 = 45,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 50; 52; 56; 90.

Vậy Q3 = (52 + 56) : 2 = 54.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 54 – 45,5 = 8,5.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 54 + 1,5.8,5 = 66,75

Hoặc x < Q1 − 1,5∆Q = 45,5 − 1,5.8,5 = 32,75

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 90.

b) Ta có: n = 9.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Sắp xếp mẫu số liệu theo thứ tự không giảm:

1; 10; 11; 11; 12; 14; 16; 19; 19

Khi đó, khoảng biến thiên R = 19 – 1 = 18.

Vì n = 9 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 12.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 1; 10; 11; 11.

Vậy Q1 = (10 + 11) : 2 = 10,5.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 14; 16; 19; 19.

Vậy Q3 = (16 + 19) : 2 = 17,5.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 17,5 – 10,5 = 7.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 17,5 + 1,5.7 = 28

Hoặc x < Q1 − 1,5∆Q = 10,5 − 1,5.7 = 0

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

c) Ta có: n = 7.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Sắp xếp mẫu số liệu theo thứ tự không giảm:

6,1; 6,2; 6,2; 6,3; 6,7; 6,8; 9,7

Khi đó, khoảng biến thiên R = 9,7 – 6,1 = 3,6.

Vì n = 7 là số lẻ nên ta có tứ phân vị thứ hai Q2 = 6,3.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, không kể Q2 vì n là số lẻ: 6,1; 6,2; 6,2.

Vậy Q1 = 6,2.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, không kể Q2 vì n là số lẻ: 6,7; 6,8; 9,7.

Vậy Q3 = 6,8.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 6,8 – 6,2 = 0,6.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 6,8 + 1,5.0,6 = 7,7

Hoặc x < Q1 − 1,5∆Q = 6,2 − 1,5.0,6 = 5,3

Vậy đối chiếu mẫu số liệu suy ra giá trị ngoại lệ là 9,7.

d) Ta có: n = 6.

Số trung bình cộng:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Phương sai:

Sách bài tập Toán 10 Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu - Chân trời sáng tạo (ảnh 1)

Sắp xếp mẫu số liệu theo thứ tự không giảm:

0,05; 0,35; 0,35; 0,38; 0,68; 0,79

Khi đó, khoảng biến thiên R = 0,79 – 0,05 = 0,74.

Vì n = 6 là số chẵn nên ta có tứ phân vị thứ hai

Q2 = (0,35 + 0,38) : 2 = 0,365.

Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 0,05; 0,35; 0,35.

Vậy Q1 = 0,35.

Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 0,38; 0,68; 0,79.

Vậy Q3 = 0,68.

Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 0,68 – 0,35 = 0,33.

Giá trị ngoại lệ x thỏa mãn

x > Q3 + 1,5∆Q = 0,68 + 1,5.0,33 = 1,175

Hoặc x < Q1 − 1,5∆Q = 0,35 − 1,5.0,33 = −0,145.

Vậy đối chiếu mẫu số liệu suy ra không có giá trị ngoại lệ.

Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài 2 trang 129 SBT Toán 10 Tập 1: Hãy tìm phương sai, khoảng biến thiên, khoảng tứ phân vị và giá trị ngoại lệ...

Bài 3 trang 129, 130 SBT Toán 10 Tập 1:Một kĩ thuật viên thống kê lại số lần máy bị lỗi từng ngày trong tháng 5/2021...

Bài 4 trang 130 SBT Toán 10 Tập 1: Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày...

Bài 5 trang 130 SBT Toán 10 Tập 1: Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được...

Bài 6 trang 130 SBT Toán 10 Tập 1: Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày...

Lý thuyết Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu

1 716 09/12/2022


Xem thêm các chương trình khác: