Giải SBT Toán 10 trang 130 Tập 1 Chân trời sáng tạo
Với Giải SBT Toán 10 trang 130 Tập 1 trong Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu Toán lớp 10 Tập 1 Chân trời sáng tạo hay nhất, chi tiết sẽ giúp học sinh dễ dàng trả lời các câu hỏi & làm bài tập Toán 10 trang 130.
Giải SBT Toán 10 trang 130 Tập 1 Chân trời sáng tạo
Bài 4 trang 130 SBT Toán 10 Tập 1: Biểu đồ sau ghi lại nhiệt độ lúc 12 giờ trưa tại một trạm quan trắc trong 10 ngày liên tiếp (đơn vị: °C).
a) Hãy viết mẫu số liệu thống kê nhiệt độ từ biểu đồ trên.
b) Hãy tìm khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu đó.
c) Hãy tìm phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
a) Ta có:
+) Nhiệt độ đạt 23°C tại các ngày: 1 và 8
+) Nhiệt độ đạt 24°C tại các ngày: 2, 3, 7 và 9
+) Nhiệt độ đạt 25°C tại các ngày: 6 và 10
+) Nhiệt độ đạt 29°C tại ngày: 5
+) Nhiệt độ đạt 32°C tại ngày: 4
Từ đó ta có mẫu số liệu thống kê nhiệt độ từ biểu đồ trên là
23; 24; 24; 32; 29; 25; 24; 23; 24; 25
b) Sắp xếp mẫu số liệu theo thứ tự không giảm:
23; 23; 24; 24; 24; 24; 25; 25; 29; 32
Khi đó, khoảng biến thiên R = 32 – 23 = 9.
Vì n = 10 là số chẵn nên ta có tứ phân vị thứ hai
Q2 = (24 + 24) : 2 = 24.
Tứ phân vị thứ nhất là trung vị của nửa số liệu bên trái Q2, gồm Q2 vì n là số chẵn: 23; 23; 24; 24; 24.
Vậy Q1 = 24.
Tứ phân vị thứ ba là trung vị của nửa số liệu bên phải Q2, gồm Q2 vì n là số chẵn: 24; 25; 25; 29; 32.
Vậy Q3 = 25.
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 25 – 24 = 1.
c) Số trung bình cộng:
Phương sai:
= 7,61
Khi đó độ lệch chuẩn S = 2,76.
Bài 5 trang 130 SBT Toán 10 Tập 1: Khuê và Trọng ghi lại số tin nhắn điện thoại mà mỗi người nhận được từ ngày 1/9 đến ngày 15/9 năm 2020 ở bảng sau:
a) Hãy tìm phương sai của từng dãy số liệu.
b) Sau khi bỏ đi các giá trị ngoại lệ (nếu có), hãy so sánh, số lượng tin nhắn mỗi bạn nhận được theo số trung bình và theo trung vị.
Lời giải:
a) n = 15
+) Khuê:
Số trung bình cộng:
Phương sai:
+) Trọng:
Số trung bình cộng:
Phương sai:
b)
+) Khuê:
Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 3, Q3 = 5
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 5 – 3 = 2.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 5 + 1,5.2 = 8
Hoặc x < Q1 − 1,5∆Q = 3 − 1,5.2 = 0
Vậy đối chiếu mẫu số liệu của Khuê suy ra không có giá trị ngoại lệ.
+) Trọng:
Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 2, Q3 = 4
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 4 – 2 = 2.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 4 + 1,5.2 = 7
Hoặc x < Q1 − 1,5∆Q = 2 − 1,5.2 = −1
Vậy đối chiếu mẫu số liệu của Trọng suy ra giá trị ngoại lệ là 30.
Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của Khuê là:
Và của Trọng là:
Khi đó trung vị của mẫu của Khuê là 4 (Với n = 15 là số lẻ)
Và số trung vị của Trọng là (2 + 2) : 2 = 2 (Với n = 14 là số chẵn).
Vậy so sánh theo cả số trung bình và số trung vị thì Khuê có nhiều tin nhắn mỗi ngày hơn Trọng.
Bài 6 trang 130 SBT Toán 10 Tập 1: Bảng sau ghi giá bán ra lúc 11 giờ trưa của 2 mã cổ phiếu A và B trong 10 ngày liên tiếp (đơn vị: nghìn đồng).
a) Biết có 1 trong 10 ngày trên có sự bất thường trong giá cổ phiếu. Hãy tìm ngày đó và giải thích.
b) Sau khi bỏ đi ngày có giá bất thường, hãy cho biết giá cổ phiếu nào ổn định hơn. Tại sao?
Lời giải:
a) +) Mã cổ phiếu A:
Áp dụng các bước tìm tứ phân vị ta tìm được Q1 = 45,1, Q3 = 45,5
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 45,5 – 45,1 = 0,4.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 45,5 + 1,5.0,4 = 46,1
Hoặc x < Q1 − 1,5∆Q = 45,1 − 1,5.0,4 = 44,5
Vậy đối chiếu mẫu số liệu của A suy ra giá trị ngoại lệ là 35,5 và rơi vào ngày thứ 4.
+) Mã cổ phiếu B:
Áp dụng các bước tìm tứ phân vị ta dễ dàng tìm được Q1 = 47,8, Q3 = 49
Khi đó khoảng tứ phân vị là ∆Q = Q3 − Q1 = 49 – 47,8 = 1,2.
Giá trị ngoại lệ x thỏa mãn
x > Q3 + 1,5∆Q = 49 + 1,5.1,2 = 50,8
Hoặc x < Q1 − 1,5∆Q = 47,8 − 1,5.1,2 = 46
Vậy đối chiếu mẫu số liệu của B suy ra giá trị ngoại lệ là 68,4 và rơi vào ngày thứ 4.
b) Sau khi bỏ đi giá trị ngoại lệ thì giá trị trung bình của mẫu của A là:
Khi đó phương sai của mẫu số liệu của A là
Và giá trị trung bình của mẫu của B là:
Khi đó phương sai của mẫu số liệu của B là
Vậy so sánh hai phương sai mẫu ta thấy 0,036 < 0,505 nên giá của mã cổ phiếu A ổn định hơn giá của mã cổ phiếu B.
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Giải SBT Toán 10 trang 129 Tập 1
Xem thêm lời giải sách bài tập Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Tích vô hướng của hai vectơ
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu
Xem thêm tài liệu Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Lý thuyết Bài 4: Các số đặc trưng đo mức độ phân tán của mẫu số liệu
Xem thêm các chương trình khác:
- Soạn văn lớp 10 (hay nhất) – Chân trời sáng tạo
- Tác giả tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Soạn văn lớp 10 (ngắn nhất) – Chân trời sáng tạo
- Tóm tắt tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Giải sbt Ngữ văn lớp 10 – Chân trời sáng tạo
- Bố cục tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Nội dung chính tác phẩm Ngữ văn lớp 10 – Chân trời sáng tạo
- Văn mẫu lớp 10 – Chân trời sáng tạo
- Giải Chuyên đề học tập Ngữ văn 10 – Chân trời sáng tạo
- Giải sgk Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Giải sbt Tiếng Anh 10 Friends Global – Chân trời sáng tạo
- Trọn bộ Từ vựng Tiếng Anh 10 Friends Global đầy đủ nhất
- Ngữ pháp Tiếng Anh 10 Friends Global
- Giải sgk Vật lí 10 – Chân trời sáng tạo
- Giải sbt Vật lí 10 – Chân trời sáng tạo
- Lý thuyết Vật lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Vật lí 10 – Chân trời sáng tạo
- Giải sgk Hóa học 10 – Chân trời sáng tạo
- Lý thuyết Hóa học 10 – Chân trời sáng tạo
- Giải sbt Hóa học 10 – Chân trời sáng tạo
- Giải Chuyên đề Hóa học 10 – Chân trời sáng tạo
- Giải sgk Sinh học 10 – Chân trời sáng tạo
- Giải sbt Sinh học 10 – Chân trời sáng tạo
- Lý thuyết Sinh học 10 – Chân trời sáng tạo
- Giải Chuyên đề Sinh học 10 – Chân trời sáng tạo
- Giải sgk Lịch sử 10 – Chân trời sáng tạo
- Giải sbt Lịch sử 10 – Chân trời sáng tạo
- Giải Chuyên đề Lịch sử 10 – Chân trời sáng tạo
- Lý thuyết Lịch sử 10 – Chân trời sáng tạo
- Giải sgk Địa lí 10 – Chân trời sáng tạo
- Lý thuyết Địa Lí 10 - Chân trời sáng tạo
- Giải sbt Địa lí 10 – Chân trời sáng tạo
- Giải Chuyên đề Địa lí 10 – Chân trời sáng tạo
- Giải sgk Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải sbt Giáo dục Kinh tế và Pháp luật 10 – Chân trời sáng tạo
- Giải Chuyên đề Kinh tế và pháp luật 10 – Chân trời sáng tạo
- Lý thuyết KTPL 10 – Chân trời sáng tạo
- Giải sgk Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sbt Hoạt động trải nghiệm 10 – Chân trời sáng tạo
- Giải sgk Giáo dục thể chất 10 – Chân trời sáng tạo