Câu hỏi:
14/07/2024 250
Hệ số của x3y3 trong khai triển nhị thức (1 + x)5(1 + y)5 là
Hệ số của x3y3 trong khai triển nhị thức (1 + x)5(1 + y)5 là
A. 10;
A. 10;
B. 400;
B. 400;
C. 100;
C. 100;
D. 36.
D. 36.
Trả lời:

Đáp án đúng là: C
Ta có hệ số của x3 có khai triển (1 + x)5 là
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là Cknan – k .bk (k ≤ n)
Thay a = 1, b = x vào trong công thức ta có Ck515 – k .(x)k = Ck515 – k .(x)k
Vì tìm hệ số của x3 nên ta có xk = x3 ⇒ k = 3
Hệ số của x3 trong khai triển (1 + x)5 là C35.13 = 10.
Ta có hệ số của y3 có khai triển (1 + y)6 là
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là Cknan – k .bk (k ≤ n)
Thay a = 1, b = y vào trong công thức ta có Ck515 – k .(y)k = Ck515 – k .(y)k
Vì tìm hệ số của y3 nên ta có yk = y3 ⇒ k = 3
Hệ số của y3 trong khai triển (1 + y)5 là C35.13 = 10
Hệ số của x3y3 trong khai triển nhị thức (1 + x)5(1 + y)5 là: 10.10 = 100
Đáp án đúng là: C
Ta có hệ số của x3 có khai triển (1 + x)5 là
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là Cknan – k .bk (k ≤ n)
Thay a = 1, b = x vào trong công thức ta có Ck515 – k .(x)k = Ck515 – k .(x)k
Vì tìm hệ số của x3 nên ta có xk = x3 ⇒ k = 3
Hệ số của x3 trong khai triển (1 + x)5 là C35.13 = 10.
Ta có hệ số của y3 có khai triển (1 + y)6 là
Ta có công thức số hạng tổng quát trong khai triển (a + b)n là Cknan – k .bk (k ≤ n)
Thay a = 1, b = y vào trong công thức ta có Ck515 – k .(y)k = Ck515 – k .(y)k
Vì tìm hệ số của y3 nên ta có yk = y3 ⇒ k = 3
Hệ số của y3 trong khai triển (1 + y)5 là C35.13 = 10
Hệ số của x3y3 trong khai triển nhị thức (1 + x)5(1 + y)5 là: 10.10 = 100
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (2a + b)4 bằng
Tổng số mũ của a và b trong mỗi hạng tử khi khai triển biểu thức (2a + b)4 bằng
Câu 6:
Biểu thức C25(5x)3(- 6y2)2 là một số hạng trong khai triển nhị thức nào dưới đây
Biểu thức C25(5x)3(- 6y2)2 là một số hạng trong khai triển nhị thức nào dưới đây
Câu 7:
Trong khai triển nhị thức (a + 2)2n + 1 (n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng
Trong khai triển nhị thức (a + 2)2n + 1 (n ∈ ℕ). Có tất cả 6 số hạng. Vậy n bằng
Câu 10:
Biết hệ số của x3 trong khai triển của (1 – 3x)n là – 270. Giá trị của n là
Biết hệ số của x3 trong khai triển của (1 – 3x)n là – 270. Giá trị của n là
Câu 11:
Với n là số nguyên dương thỏa mãn C1n+C2n=10, hệ số chứa x2 trong khai triển của biểu thức (x3+2x2)n bằng
Với n là số nguyên dương thỏa mãn C1n+C2n=10, hệ số chứa x2 trong khai triển của biểu thức (x3+2x2)n bằng
Câu 14:
Trong khai triển nhị thức (2x2+1x)n hệ số của x3 là 22C1n Giá trị của n là
Trong khai triển nhị thức (2x2+1x)n hệ số của x3 là 22C1n Giá trị của n là