Câu hỏi:
13/07/2024 137Giá trị của biểu thức M = sin245° – 2sin250° + 3cos245° – 2sin2130° + 4tan55°.tan35° bằng:
A. 1;
B. 2;
C. 4;
D. 5.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Ta có M = sin245° – 2sin250° + 3cos245° – 2sin2130° + 4tan55°.tan35°
\( = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} - 2{\sin ^2}50^\circ + 3.{\left( {\frac{{\sqrt 2 }}{2}} \right)^2} - 2{\sin ^2}\left( {180^\circ - 50^\circ } \right) + 4\tan 55^\circ .\tan \left( {90^\circ - 55^\circ } \right)\)
= 2 – 2(sin250° + cos250°) + 4tan55°.cot55°
= 2 – 2.1 + 4.1 (Áp dụng kết quả Bài tập 5a và 5b, trang 65, Sách giáo khoa Toán 10, Tập một)
= 4.
Vậy ta chọn phương án C.
Hướng dẫn giải
Đáp án đúng là: C
Ta có M = sin245° – 2sin250° + 3cos245° – 2sin2130° + 4tan55°.tan35°
\( = {\left( {\frac{{\sqrt 2 }}{2}} \right)^2} - 2{\sin ^2}50^\circ + 3.{\left( {\frac{{\sqrt 2 }}{2}} \right)^2} - 2{\sin ^2}\left( {180^\circ - 50^\circ } \right) + 4\tan 55^\circ .\tan \left( {90^\circ - 55^\circ } \right)\)
= 2 – 2(sin250° + cos250°) + 4tan55°.cot55°
= 2 – 2.1 + 4.1 (Áp dụng kết quả Bài tập 5a và 5b, trang 65, Sách giáo khoa Toán 10, Tập một)
= 4.
Vậy ta chọn phương án C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:
Câu 3:
Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng: