Câu hỏi:

20/07/2024 150

Cho biết \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\), với 0° < α < 90°. Giá trị của cotα bằng:

A. \(\frac{{\sqrt 5 }}{4}\);

B. \(\frac{{\sqrt 3 }}{4}\);

C. \(\frac{{\sqrt 2 }}{2}\);

D. \(\frac{{\sqrt 2 }}{4}\).

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có \(2\cos \alpha + \sqrt 2 \sin \alpha = 2\)

\[ \Leftrightarrow \sqrt 2 \sin \alpha = 2 - 2\cos \alpha \]

2sin2α = (2 – 2cosα)2

2(1 – cos2α) = 4 – 8cosα + 4cos2α

6cos2α – 8cosα + 2 = 0   (1)

Đặt t = cosα.

Vì 0° < α < 90° nên 0 < t < 1.

Phương trình (1) tương đương với: 6t2 – 8t + 2 = 0

\( \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = \frac{1}{3}\end{array} \right.\)

Vì 0 < t < 1 nên ta nhận \(t = \frac{1}{3}\).

Với \(t = \frac{1}{3}\), ta có \[\cos \alpha = \frac{1}{3}\].

Suy ra \[{\cos ^2}\alpha = \frac{1}{9}\]

Áp dụng Bài tập 5a, trang 65, Sách giáo khoa Toán 10, Tập một, ta có:

sin2α + cos2α = 1

\[ \Leftrightarrow {\sin ^2}\alpha = 1 - {\cos ^2}\alpha = 1 - \frac{1}{9} = \frac{8}{9}\].

\( \Leftrightarrow \left[ \begin{array}{l}\sin \alpha = \frac{{2\sqrt 2 }}{3}\\\sin \alpha = - \frac{{2\sqrt 2 }}{3}\end{array} \right.\)

Vì 0° < α < 90° nên α là góc nhọn.

Do đó sinα > 0.

Vì vậy ta nhận \(\sin \alpha = \frac{{2\sqrt 2 }}{3}\).

Ta có \(\cot \alpha = \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{3}:\frac{{2\sqrt 2 }}{3} = \frac{1}{3}.\frac{3}{{2\sqrt 2 }} = \frac{1}{{2\sqrt 2 }} = \frac{{\sqrt 2 }}{4}\).

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC. Khẳng định nào sau đây đúng nhất?

Xem đáp án » 13/07/2024 248

Câu 2:

Giá trị của biểu thức M = sin245° – 2sin250° + 3cos245° – 2sin2130° + 4tan55°.tan35° bằng:

Xem đáp án » 13/07/2024 131

Câu 3:

Cho biết sinα – cosα = \(\frac{1}{{\sqrt 5 }}\)(0° ≤ α, β ≤ 180°). Giá trị của \(E = \sqrt {{{\sin }^4}\alpha + {{\cos }^4}\alpha } \) bằng:

Xem đáp án » 18/07/2024 122

Câu 4:

Cho biết tanα = –3 (0° ≤ α ≤ 180°). Giá trị của \(H = \frac{{6\sin \alpha - 7\cos \alpha }}{{6\cos \alpha + 7\sin \alpha }}\) bằng:

Xem đáp án » 22/07/2024 112

Câu hỏi mới nhất

Xem thêm »
Xem thêm »