Câu hỏi:

19/11/2024 49,230

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x4+6x2+mx có ba điểm cực trị?

A. 17

B. 15

Đáp án chính xác

C. 3

D. 7

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: B

*Lời giải:

Ta có: y'=4x3+12x+m. Xét phương trình y'=04x3+12x+m=0      1.

Để hàm số có ba điểm cực trị thì phương trình (1) phải có 3 nghiệm phân biệt.

Ta có: 1m=4x312x.

Xét hàm số gx=4x312x có g'x=12x212. Cho g'x=012x212=0x=±1.

Bảng biến thiên của gx

Có bao nhiêu giá trị nguyên của tham số m  để hàm số y= -x^4+6x^2+mx  có ba điểm cực trị? (ảnh 1)

Dựa vào bảng biến thiên ta thấy, phương trình (1) có 3 nghiệm phân biệt khi 8<m<8.

Do mm7,6,5,...,5,6,7.

Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài.

*Phương pháp giải:

Khi đó để giải bài toán này, ta tiến hành theo hai bước.

Bước 1. Điều kiện cần để hàm số đạt cực trị tại x0 là y'(x0) = 0, từ điều kiện này ta tìm được giá trị của tham số .

Bước 2. Kiểm lại bằng cách dùng một trong hai quy tắc tìm cực trị ,để xét xem giá trị của tham số vừa tìm được có thỏa mãn yêu cầu của bài toán hay không?

* Các lý thuyết thêm & dạng bài tập về bảng biến thiên và biện luận số nghiệm dựa vào phương trình hoặc đồ thị cho trước:

Cho hai hàm số y = f(x) có đồ thị (C1) và y = g(x) có đồ thị (C2). Khi đó số nghiệm của phương trình f(x) = g(x) sẽ bằng số giao điểm của (C1) và (C2)

1. Áp dụng vào biện luận số nghiệm phương trình

Cho phương trình f(x) = m. Số nghiệm của phương trình đã cho phụ thuộc vào số giao điểm của đường thẳng y = m với đồ thị hàm số y = f(x). Trong đó đường thẳng y = m tịnh tiến trên trục Oy.

2. Cách biện luận số nghiệm phương trình f(x) = m

a. Cách 1: Khi bài toán cho sẵn đồ thị hàm số f(x) = m

- Ta dựa vào sự tịnh tiến của đường thẳng y = m xem nó cắt đồ thị y = f(x) tại mấy điểm, từ đó biện luận phương trình có 1 nghiệm; 2 nghiệm; ... hoặc vô nghiệm khi nào tùy thuộc vào khoảng giá trị của m.

b. Cách 2: Khi bài toán không cho đồ thị

- Với cách này thì ta lập bảng biến thiên của hàm số y = f(x)

Sau đó ta biện luận tương tự như cách 1

- Cách này sẽ thuận tiện với những bài toán chưa có sẵn đồ thị

Sơ đồ khảo sát hàm số y = f(x)

Sơ đồ khảo sát hàm số y = f(x):

Bước 1: Tìm tập xác định của hàm số.

Bước 2: Khảo sát sự biến thiên của hàm số:

- Tính đạo hàm y'. Tìm các điểm tại đó y' bằng 0 hoặc đạo hàm không tồn tại.

- Xét dấu y' để chỉ ra các khoảng đơn điệu của hàm số.

- Tìm cực trị của hàm số.

- Tìm các giới hạn tại vô cực, giới hạn vô cực và tìm tiệm cận của đồ thị hàm số (nếu có).

- Lập bảng biến thiên của hàm số.

Bước 3: Vẽ đồ thị của hàm số dựa vào bảng biến thiên.

Chú ý:

Khi vẽ đồ thị, nên xác định thêm một số điểm đặc biệt của đồ thị, chẳng hạn tìm giao điểm của đồ thị với các trục tọa độ (khi có và việc tìm không quá phức tạp). Ngoài ra, cần lưu ý đến tính đối xứng của đồ thị (đối xứng tâm, đối xứng trục).

 

- Định lí 1

Giả sử hàm số y = f(x) liên tục trên khoảng K = (x0 – h; x0 + h) và có đạo hàm trên K hoặc trên K \ {x0}; với h > 0.

a) Nếu f’(x) > 0 trên khoảng (x0 – h; x0) và f’(x) < 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực đại của hàm số f(x).

b) Nếu f’(x) < 0 trên khoảng (x0 – h; x0) và f’(x) > 0 trên khoảng (x0; x0 + h) thì x0 là một điểm cực tiểu của hàm số f(x).

Lý thuyết Cực trị của hàm số chi tiết – Toán lớp 12 (ảnh 1)Lý thuyết Cực trị của hàm số chi tiết – Toán lớp 12 (ảnh 1)

Xem thêm các bài viết liên quan hay, chi tiết

Lý thuyết Sự đồng biến, nghịch biến của hàm số (mới 2024 + Bài Tập) – Toán 12 

TOP 40 câu Trắc nghiệm Cực trị hàm số (có đáp án 2024) - Toán 12 

TOP 40 câu Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị của hàm số (có đáp án 2024) - Toán 12 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) liên tục trên R. Gọi Fx,Gx là hai nguyên hàm của f(x) trên R thỏa mãn F4+G4=4 F0+G0=1. Khi đó 02f2xdx bằng

Xem đáp án » 23/11/2024 59,421

Câu 2:

Có bao nhiêu cặp số nguyên (x,y) thỏa mãn

log3x2+y2+x+log2x2+y2log3x+log2x2+y2+24x?

Xem đáp án » 10/12/2024 55,251

Câu 3:

Cho hàm số y=ax4+bx2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Cho hàm số  y= ax^4+bx^2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là (ảnh 1)

Xem đáp án » 11/12/2024 45,258

Câu 4:

Trong không gian Oxyz, cho điểm A0;1;2 và đường thẳng d:x22=y12=z13. Gọi (P) là mặt phẳng đi qua A và chứa d. Khoảng cách từ điểm M5;1;3 đến (P) bằng

Xem đáp án » 06/11/2024 43,097

Câu 5:

Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Xem đáp án » 20/11/2024 43,063

Câu 6:

Tính thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y=x2+2x và y=0quanh trục Ox bằng

Xem đáp án » 06/11/2024 35,561

Câu 7:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz)bằng

Xem đáp án » 06/11/2024 18,584

Câu 8:

Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãnf(x)+xf'(x)=4x3+4x+2,x. Diện tích hình phẳng giới hạn bởi các đường y=f(x) y=f'(x) bằng

Xem đáp án » 23/07/2024 17,554

Câu 9:

Cho mặt phẳng (P) tiếp xúc với mặt cầu S(O,R). Gọi d là khoảng cách từ O đến (P). Khẳng định nào dưới đây đúng?

Xem đáp án » 22/07/2024 15,926

Câu 10:

Tập nghiệm của bất phương trình logx2>0 

Xem đáp án » 14/11/2024 14,584

Câu 11:

Có bao nhiêu giá trị nguyên của tham số a10;+ để hàm số y=x3+a+2x+9a2 đồng biến trên khoảng (0,1)?

Xem đáp án » 23/07/2024 12,645

Câu 12:

Cho hình nón có đường kính đáy 2r và độ dải đường sinh l . Diện tích xung quanh của hình nón đã cho bằng

Xem đáp án » 13/11/2024 10,465

Câu 13:

Cho hàm số y=ax+bcx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Cho hàm số  y= ax+b/ cx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là   (ảnh 1)

Xem đáp án » 22/07/2024 7,362

Câu 14:

Có bao nhiêu số nguyên x thỏa mãn log3x216343<log7x21627?

Xem đáp án » 22/07/2024 6,948

Câu 15:

Trong không gian Oxyz cho A0;0;10,B3;4;6. Xét các điểm M thay đổi sao cho tam giácOAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Xem đáp án » 23/07/2024 5,908

Câu hỏi mới nhất

Xem thêm »
Xem thêm »