Câu hỏi:

10/12/2024 55,478

Có bao nhiêu cặp số nguyên (x,y) thỏa mãn

log3x2+y2+x+log2x2+y2log3x+log2x2+y2+24x?

A. 89

B. 48

Đáp án chính xác

C. 90

D. 49

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là  B

Lời giải

Điều kiện: x>0.

Ta có: log3x2+y2+x+log2x2+y2log3x+log2x2+y2+24x

log3x2+y2+xlog3xlog2x2+y2+24xlog2x2+y2

log3x2+y2+xxlog2x2+y2+24xx2+y2log31+x2+y2xlog21+24xx2+y2

log3x2+y2x+1log21+24xx2+y20. 

Đặt: t=x2+y2x(t>0), bất phương trình trở thành: log3(1+t)log21+24t0 (1).

Xét hàm số f(t)=log3(1+t)log21+24t có f'(t)=1(1+t)ln3+24t2+24tln2>0,t>0.

Suy ra hàm số đồng biến trên khoảng (0;+).

Ta có f(8)=log3(1+8)log21+248=0

Từ đó suy ra: (1)f(t)f(8)t8x2+y2x8(x4)2+y216.

Đếm các cặp giá trị nguyên của (x;y)

Ta có: (x4)2160x8, mà x>0 nên 0<x8.

Với x=1,x=7y={±2;±1;0} nên có 10 cặp.

Với x=2,x=6y={±3;±2;±1;0} nên có 14 cặp.

Với x=3,x=5y={±3;±2;±1;0} nên có 14 cặp.

Với x=4y={±4;±3;±2;±1;0} nên có 9 cặp.

Với x=8y=0 có 1 cặp.

Vậy có 48 cặp giá trị nguyên (x;y) thỏa mãn đề bài.

*Phương pháp giải:

Xét bất phương trình logaf(x) > logag(x) (a > 0, a ≠ 1)  

• Nếu a > 1 thì logaf(x) > logag(x) ⇔ f(x) > g(x) (cùng chiều khi a > 1)

• Nếu 0 < a < 1 thì logaf(x) > logag(x) ⇔ f(x) < g(x) (ngược chiều khi 0 < a < 1 )

• Nếu a chứa ẩn thì logaf(x) > logag(x) ⇔ Các dạng bài tập bất phương trình lôgarit và cách giải (hoặc chia 2 trường hợp của cơ số)

*Lý thuyết:

1. Định nghĩa

Bất phương trình lôgarit là bất phương trình có chứa ẩn số trong biểu thức dưới dấu lôgarit.

2. Phương trình và bất phương trình lôgarit cơ bản: cho a,b > 0, a ≠ 1 

Bất phương trình lôgarit cơ bản có dạng: logaf(x) > b; logaf(x) ≥ b; logaf(x) < b; logaf(x) ≤ b

3. Phương pháp giải phương trình và bất phương trình lôgarit

+ Đưa về cùng cơ số

Nếu Các dạng bài tập bất phương trình lôgarit và cách giải

Nếu Các dạng bài tập bất phương trình lôgarit và cách giải

+ Đặt ẩn phụ

+ Mũ hóa

+ Phương pháp hàm số và đánh giá

Xem thêm

Bất phương trình logarit và cách giải các dạng bài tập (2024) 

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số f(x) liên tục trên R. Gọi Fx,Gx là hai nguyên hàm của f(x) trên R thỏa mãn F4+G4=4 F0+G0=1. Khi đó 02f2xdx bằng

Xem đáp án » 23/11/2024 59,896

Câu 2:

Có bao nhiêu giá trị nguyên của tham số m để hàm số y=x4+6x2+mx có ba điểm cực trị?

Xem đáp án » 19/11/2024 49,341

Câu 3:

Cho hàm số y=ax4+bx2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Cho hàm số  y= ax^4+bx^2+c có đồ thị là đường cong trong hình bên. Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là (ảnh 1)

Xem đáp án » 11/12/2024 45,410

Câu 4:

Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được đánh số từ 1 đến 9. Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng

Xem đáp án » 20/11/2024 43,925

Câu 5:

Trong không gian Oxyz, cho điểm A0;1;2 và đường thẳng d:x22=y12=z13. Gọi (P) là mặt phẳng đi qua A và chứa d. Khoảng cách từ điểm M5;1;3 đến (P) bằng

Xem đáp án » 06/11/2024 43,357

Câu 6:

Tính thể tích khối tròn xoay thu được khi quay hình phẳng giới hạn bởi hai đường y=x2+2x và y=0quanh trục Ox bằng

Xem đáp án » 06/11/2024 36,235

Câu 7:

Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz)bằng

Xem đáp án » 06/11/2024 18,616

Câu 8:

Cho hàm số y=f(x) có đạo hàm liên tục trên R và thỏa mãnf(x)+xf'(x)=4x3+4x+2,x. Diện tích hình phẳng giới hạn bởi các đường y=f(x) y=f'(x) bằng

Xem đáp án » 23/07/2024 17,779

Câu 9:

Cho mặt phẳng (P) tiếp xúc với mặt cầu S(O,R). Gọi d là khoảng cách từ O đến (P). Khẳng định nào dưới đây đúng?

Xem đáp án » 22/07/2024 15,950

Câu 10:

Tập nghiệm của bất phương trình logx2>0 

Xem đáp án » 14/11/2024 14,767

Câu 11:

Có bao nhiêu giá trị nguyên của tham số a10;+ để hàm số y=x3+a+2x+9a2 đồng biến trên khoảng (0,1)?

Xem đáp án » 23/07/2024 12,696

Câu 12:

Cho hình nón có đường kính đáy 2r và độ dải đường sinh l . Diện tích xung quanh của hình nón đã cho bằng

Xem đáp án » 13/11/2024 10,497

Câu 13:

Cho hàm số y=ax+bcx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là

Cho hàm số  y= ax+b/ cx+d có đồ thị là đường cong trong hình vẽ bên. Tọa độ giao điểm của đồ thị hàm số đã cho và trục hoành là   (ảnh 1)

Xem đáp án » 22/07/2024 7,377

Câu 14:

Có bao nhiêu số nguyên x thỏa mãn log3x216343<log7x21627?

Xem đáp án » 22/07/2024 6,969

Câu 15:

Trong không gian Oxyz cho A0;0;10,B3;4;6. Xét các điểm M thay đổi sao cho tam giácOAM không có góc tù và có diện tích bằng 15 Giá trị nhỏ nhất của độ dài đoạn thẳng MB thuộc khoảng nào dưới đây?

Xem đáp án » 23/07/2024 5,982

Câu hỏi mới nhất

Xem thêm »
Xem thêm »