Câu hỏi:
09/10/2024 4,352Cho biết cosα = -2/3. Tính tanα biết tanα > 0.
A.
B.
C.
D.
Trả lời:
Đáp án đúng: C
*Phương pháp giải:
- Áp dụng tính chất của giá trị lượng giác đặc biệt, quy tắc nhân lượng giác, hằng đẳng thức để thực hiên phép tính
*Lời giải:
Ta có:
(vì tanα > 0).
*Các lý thuyết cần nằm về lượng giác
a. Công thức cộng:
b. Công thức nhân đôi, hạ bậc:
* Công thức nhân đôi:
* Công thức hạ bậc:
* Công thức nhân ba:
c. Công thức biến đổi tích thành tổng:
d. Công thức biển đổi tổng thành tích:
|
|
*Các dạng bài lượng giác của một góc bất kì từ 0-180a) Dạng 1: Góc và dấu của các giá trị lượng giác *Phương pháp: Áp dụng định nghĩa giá trị lượng giác của một góc, tính chất và bảng giá trị lượng giác đặc biệt và các chú ý về dấu của giá trị lượng giác liên quan tới góc.b) Dạng 2: Cho một giá trị lượng giác, tính các giá trị lượng giác còn lại*Phương pháp: Áp dụng định nghĩa giá trị lượng giác của một góc, tính chất của giá trị lượng giác đặc biệt, các hệ thức cơ bản liên hệ giữa các giá trị lượng giác để từ một giá trị lượng giác suy ra các giá trị lượng giác còn lại.c) Dạng 3: Chứng minh, rút gọn biểu thức lượng giác*Phương pháp: Áp dụng định nghĩa giá trị lượng giác của một góc, bảng các giá trị lượng giác đặc biệt, tính chất của giá trị lượng giác đặc biệt, các hệ thức cơ bản liên hệ giữa các giá trị lượng giác, hằng đẳng thức để rút gọn biểu thức lượng giác hay chứng minh một đẳng thức lượng giác ( bằng cách chứng minh hai vế bằng nhau hoặc từ đẳng thức đã cho biến đổi về một đẳng thức được công nhận là đúng).Xem thêm các bài viết liên quan hay, chi tiết:
TOP 40 câu Trắc nghiệm Phương trình lượng giác cơ bản
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tam giác ABC có b = 6 và c = 8; góc A bằng 60 độ. Độ dài cạnh a là:
Câu 6:
Cho tam giác MNP có S = 84; a =13; b = 14; c = 15. Độ dài bán kính đường tròn ngoại tiếp của tam giác trên gần với số nào nhất?
Câu 7:
Cho tam giác ABC. Lấy điểm M trên BC sao cho .Câu nào sau đây đúng
Câu 8:
Trong mặt phẳng Oxy cho A(-1; 1) ; B(1; 3) và C(1; -1). Khẳng định nào sau đây đúng.
Câu 9:
Cho ba điểm A; B; C thỏa mãn có AB = 2 cm; BC = 3cm; CA = 5cm. Tính
Câu 13:
Cho hình thang vuông ABCD có đáy lớn AB = 4a, đáy nhỏ CD = 2a, đường cao AD = 3a. Tính