Câu hỏi:
13/07/2024 405Cho ∆ABC, biết \(\widehat A = 60^\circ \), \({h_c} = 2\sqrt 3 \), R = 6. Khẳng định nào sau đây đúng?
A. \(a = 6\sqrt 3 ,\,\,b = 2 + 4\sqrt 6 ,c = 4;\);
B. \(a = 6\sqrt 3 ,\,\,b = 4,\,\,c = 2 + 4\sqrt 6 \);
C. \(a = 6\sqrt 3 ,\,\,b = 4,c = 2 + \sqrt 6 ;\)
D. \(a = 6\sqrt 3 ,\,\,b = 2 + \sqrt 6 ,c = 4\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
⦁ Theo hệ quả định lí sin, ta có:
a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).
⦁ Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).
Suy ra hc = b.sinA
Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).
⦁ Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA
Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)
Khi đó c2 – 4c – 92 = 0
Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).
Vì c là độ dài một cạnh của ∆ABC nên c > 0.
Do đó ta nhận \(c = 2 + 4\sqrt 6 \).
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: B
⦁ Theo hệ quả định lí sin, ta có:
a = 2R.sinA = 2.6.sin60° = \(6\sqrt 3 \).
⦁ Ta có S = \(\frac{1}{2}c{h_c} = \frac{1}{2}bc\sin A\,\).
Suy ra hc = b.sinA
Do đó \(b = \frac{{{h_c}}}{{\sin A}} = \frac{{2\sqrt 3 }}{{\sin 60^\circ }} = 4\).
⦁ Theo định lí côsin, ta có a2 = b2 + c2 – 2bc.cosA
Suy ra \({\left( {6\sqrt 3 } \right)^2} = {4^2} + {c^2} - 2.4.c.\cos 60^\circ \)
Khi đó c2 – 4c – 92 = 0
Vì vậy \(c = 2 + 4\sqrt 6 \) hoặc \(c = 2 - 4\sqrt 6 \).
Vì c là độ dài một cạnh của ∆ABC nên c > 0.
Do đó ta nhận \(c = 2 + 4\sqrt 6 \).
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Cho ∆ABC biết b = 32, c = 45, \[\widehat A = 87^\circ \]. Khẳng định nào sau đây đúng?
Câu 2:
Tam giác đều nội tiếp đường tròn bán kính R = 4 cm có diện tích bằng:
Câu 3:
∆ABC có AB = 5, AC = 10, \(\widehat A = 60^\circ \). Độ dài đường cao ha của ∆ABC bằng:
Câu 4:
∆ABC có AB = 3, AC = 6 và \(\widehat A = 60^\circ \). Độ dài bán kính R của đường tròn ngoại tiếp ∆ABC bằng:
Câu 5:
Cho hai góc α và β (với 0° ≤ α, β ≤ 180°) thỏa mãn α + β = 180°. Giá trị của biểu thức P = sinα.cosα + sinβ.cosβ bằng:
Câu 6:
Cho hình thoi ABCD có cạnh bằng 1 cm và có đường chéo AC = \(\sqrt 3 \) cm. Số đo \(\widehat {BAD}\) bằng:
Câu 7:
Giá trị của biểu thức M = sin50° + cos70° + cos110° – sin130° bằng:
Câu 8:
Giá trị của biểu thức B = 3 – sin290° + 2cos260° – 3tan245° bằng:
Câu 9:
Giá trị của biểu thức H = cot5°.cot10°.cot15°…cot80°.cot85° bằng: