Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án
Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án (Thông hiểu)
-
921 lượt thi
-
8 câu hỏi
-
30 phút
Danh sách câu hỏi
Câu 1:
23/07/2024Với giá trị nào của m thì phương trình x2 + y2 – 2(m + 2)x + 4my + 19m – 6 = 0 là phương trình đường tròn?
Hướng dẫn giải
Đáp án đúng là: C
Phương trình đã cho có dạng x2 + y2 – 2ax – 2by + c = 0, với \(\left\{ \begin{array}{l} - 2a = - 2\left( {m + 2} \right)\\ - 2b = 4m\\c = 19m - 6\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = m + 2\\b = - 2m\\c = 19m - 6\end{array} \right.\)
Để phương trình đã cho là phương trình đường tròn thì a2 + b2 – c > 0.
⇔ (m + 2)2 + (–2m)2 – 19m + 6 > 0.
⇔ 5m2 – 15m + 10 > 0.
⇔ m < 1 hoặc m > 2.
Vậy m < 1 hoặc m > 2 thì phương trình đã cho là phương trình đường tròn.
Do đó ta chọn phương án C.
Câu 2:
16/07/2024Cho đường tròn (C): x2 + y2 + 2x + 4y – 20 = 0. Tìm mệnh đề sai trong các mệnh đề sau:
Hướng dẫn giải
Đáp án đúng là: A
⦁ Phương trình đường tròn có dạng x2 + y2 – 2ax – 2by + c = 0, với \(\left\{ \begin{array}{l} - 2a = 2\\ - 2b = 4\\c = - 20\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 2\\c = - 20\end{array} \right.\)
Suy ra (C) có tâm I(–1; –2).
Do đó phương án A sai.
⦁ Ta có \(R = \sqrt {{a^2} + {b^2} - c} = \sqrt {{{\left( { - 1} \right)}^2} + {{\left( { - 2} \right)}^2} + 20} = 5\).
Suy ra (C) có đường kính 2R = 10.
Do đó phương án B đúng.
⦁ Thế tọa độ điểm M(2; 2) vào phương trình (C), ta được:
22 + 22 + 2.2 + 4.2 – 20 = 0 (đúng).
Suy ra M(2; 2) ∈ (C).
Do đó phương án C đúng.
⦁ Thế tọa độ điểm A(1; 1) vào phương trình (C), ta được:
12 + 12 + 2.1 + 4.1 – 20 = – 12 ≠ 0.
Suy ra A(1; 1) ∉ (C).
Do đó phương án D đúng.
Vậy ta chọn phương án A.
Câu 3:
16/07/2024Đường tròn tâm I(1; 4) và đi qua điểm B(2; 6) có phương trình là:
Hướng dẫn giải
Đáp án đúng là: D
Ta có \(R = IB = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {6 - 4} \right)}^2}} = \sqrt 5 \).
Đường tròn có tâm I(1; 4) và có bán kính \(R = \sqrt 5 \) có phương trình là:
(x – 1)2 + (y – 4)2 = 5.
Vậy ta chọn phương án D.
Câu 4:
14/07/2024Một đường tròn có tâm I(3; –2), tiếp xúc với đường thẳng ∆: x – 5y + 1 = 0. Bán kính của đường tròn đó bằng:
Hướng dẫn giải
Đáp án đúng là: C
Do đường tròn tiếp xúc với đường thẳng ∆ nên bán kính của đường tròn bằng khoảng cách từ tâm đường tròn đến đường thẳng ∆.
Tức là, \(R = d\left( {I,\Delta } \right) = \frac{{\left| {3 - 5.\left( { - 2} \right) + 1} \right|}}{{\sqrt {{1^2} + {{\left( { - 5} \right)}^2}} }} = \frac{{14}}{{\sqrt {26} }}\).
Vậy bán kính của đường tròn đã cho bằng \(\frac{{14}}{{\sqrt {26} }}\).
Do đó ta chọn phương án C.
Câu 5:
19/07/2024Cho hai điểm A(1; 1) và B(7; 5). Phương trình đường tròn đường kính AB là:
Hướng dẫn giải
Đáp án đúng là: C
Gọi I là trung điểm AB. Suy ra tọa độ I(4; 3).
Ta có \(AI = \sqrt {{{\left( {4 - 1} \right)}^2} + {{\left( {3 - 1} \right)}^2}} = \sqrt {13} \).
Vì đường tròn cần tìm có đường kính là AB nên đường tròn đó nhận trung điểm I(4; 3) là tâm và có bán kính \(R = AI = \sqrt {13} \).
Suy ra phương trình đường tròn cần tìm là: (x – 4)2 + (y – 3)2 = 13.
⇔ x2 + y2 – 8x – 6y + 12 = 0.
Vậy ta chọn phương án C.
Câu 6:
17/07/2024Tâm của đường tròn đi qua ba điểm A(2; 1), B(2; 5), C(–2; 1) thuộc đường thẳng có phương trình:
Hướng dẫn giải
Đáp án đúng là: A
Ta gọi:
⦁ (C) là đường tròn cần tìm;
⦁ I(a; b) là tâm của đường tròn (C).
Vì đường tròn đi qua ba điểm A(2; 1), B(2; 5), C(–2; 1) nên ta có IA = IB = IC.
⇔ IA2 = IB2 = IC2.
\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( {2 - a} \right)^2} + {\left( {5 - b} \right)^2}\\{\left( {2 - a} \right)^2} + {\left( {1 - b} \right)^2} = {\left( { - 2 - a} \right)^2} + {\left( {1 - b} \right)^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}8b = 24\\ - 8a = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}b = 3\\a = 0\end{array} \right.\)
Suy ra I(0; 3).
Thế tọa độ I(0; 3) vào phương trình ở phương án A, ta được: 0 – 3 + 3 = 0 (đúng).
Thế tọa độ I(0; 3) vào phương trình ở phương án B, ta được: 0 – 3 – 3 = –6 ≠ 0.
Thế tọa độ I(0; 3) vào phương trình ở phương án C, ta được: 0 + 2.3 – 3 = 3 ≠ 0.
Thế tọa độ I(0; 3) vào phương trình ở phương án D, ta được: 0 + 3 + 3 = 6 ≠ 0.
Vậy tâm I(0; 3) thuộc đường thẳng có phương trình x – y + 3 = 0.
Do đó ta chọn phương án A
Câu 7:
19/07/2024Cho đường tròn (C): (x – 3)2 + (y – 1)2 = 10. Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là:
Hướng dẫn giải
Đáp án đúng là: D
Đường tròn (C) có tâm I(3; 1).
Ta có \(\overrightarrow {IA} = \left( {4 - 3;4 - 1} \right) = \left( {1;3} \right)\).
Phương trình tiếp tuyến của (C) tại điểm A(4; 4) là: 1.(x – 4) + 3(y – 4) = 0.
⇔ x + 3y – 16 = 0.
Vậy ta chọn phương án D.
Câu 8:
19/07/2024Cho đường tròn (C): (x – 2)2 + (y – 2)2 = 9. Phương trình tiếp tuyến của (C) đi qua điểm A(5; –1) là:
Hướng dẫn giải
Đáp án đúng là: B
Đường tròn (C) có tâm I(2; 2), bán kính R = 3.
Gọi d là tiếp tuyến cần tìm có vectơ pháp tuyến \(\vec n = \left( {A;B} \right)\).
Vì d đi qua điểm A(5; –1) nên phương trình d có dạng: A(x – 5) + B(y + 1) = 0.
⇔ Ax + By – 5A + B = 0.
Vì d là tiếp tuyến của (C) nên ta có d(I, d) = R.
\( \Leftrightarrow \frac{{\left| {A.2 + B.2 - 5A + B} \right|}}{{\sqrt {{A^2} + {B^2}} }} = 3\)
\( \Leftrightarrow \left| { - 3A + 3B} \right| = 3\sqrt {{A^2} + {B^2}} \)
⇔ 9A2 – 18AB + 9B2 = 9(A2 + B2)
⇔ AB = 0.
⇔ A = 0 hoặc B = 0.
Với A = 0, ta chọn B = 1.
Suy ra phương trình d: y + 1 = 0 ⇔ y = –1.
Với B = 0, ta chọn A = 1.
Suy ra phương trình d: x – 5 = 0 ⇔ x = 5.
Vậy có 2 tiếp tuyến thỏa mãn yêu cầu bài toán có phương trình là: y = –1 hoặc x = 5.
Do đó ta chọn phương án B.
Bài thi liên quan
-
Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án (Nhận biết)
-
7 câu hỏi
-
30 phút
-
-
Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án (Vận dụng)
-
5 câu hỏi
-
30 phút
-
Có thể bạn quan tâm
- Trắc nghiệm Toán 10 Bài 5. Phương trình đường tròn có đáp án (219 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 5. Phương trình đường tròn (Phần 2) có đáp án (920 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Toán 10 Cánh diều Bài 6. Ba đường conic (Phần 2) có đáp án (901 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng (Phần 2) có đáp án (839 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 2. Biểu thức tọa độ của các phép toán vectơ (Phần 2) có đáp án (673 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 3. Phương trình đường thẳng (Phần 2) có đáp án (536 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 7. Bài tập cuối chương 7 (Phần 2) có đáp án (519 lượt thi)
- Trắc nghiệm Toán 10 Cánh diều Bài 1. Tọa độ của vectơ (Phần 2) có đáp án (465 lượt thi)
- Trắc nghiệm Toán 10 Bài ôn tập cuối chương 7 có đáp án (311 lượt thi)
- Trắc nghiệm Toán 10 Bài 4. Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng có đáp án (275 lượt thi)
- Trắc nghiệm Toán 10 Bài 6. Ba đường Conic có đáp án (262 lượt thi)
- Trắc nghiệm Toán 10 Bài 3. Phương trình đường thẳng có đáp án (256 lượt thi)