21 câu trắc nghiệm: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án
21 câu trắc nghiệm: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án
-
263 lượt thi
-
21 câu hỏi
-
50 phút
Danh sách câu hỏi
Câu 1:
20/07/2024Giá trị lớn nhất của hàm số là:
Tập xác định: D = R. Ta có
Do đó giá trị lớn nhất của hàm số f(x) là 4 đạt được khi x = 0. Chọn đáp án B.
Câu 2:
22/07/2024Giá trị lớn nhất của hàm số đạt được khi x nhận giá trị bằng
Tập xác định: D = R \ {1}
=> không tồn tại x thỏa mãn. Do đó hàm số không có giá trị lớn nhất. Chọn đáp án D.
Câu 3:
17/07/2024Giá trị lớn nhất của hàm số trên [0; 3] là:
Vậy GTLN của hàm số trên [0; 3] là đạt được khi x = 5/6. Chọn đáp án C.
Câu 4:
23/07/2024Giá trị lớn nhất của hàm số có đồ thị như hình bên là
Chọn đáp án D.
Chú ý. Cần phân biệt giá trị lớn nhất của hàm số và cực đại của hàm số.
Câu 5:
13/07/2024Một công ti quản lí chuẩn bị xây dựng một khu chung cư mới. Họ tính toán nếu tòa nhà có x căn hộ thì chi phí bảo trì của tòa nhà là: Khu đất của họ có thể xây được tòa nhà chứa tối đa 300 căn hộ. Hỏi họ nên xây dựng tòa nhà có bao nhiêu căn hộ để chi phí bảo trì của tòa nhà là nhỏ nhất?
Ta có x là số căn hộ. Rõ ràng x phải thỏa mãn điều kiện 0 ≤ x ≤ 300. Chi phí bảo trì tòa nhà C(x) = 4000 - 14x + 0,04x2
Ta phải tìm sao cho có giá trị nhỏ nhất.
Ta có C'(x) = -14 + 0,08x, 0 ≤ x ≤ 300. C'(x) = 0 <=> x = 175
Trên đoạn [0; 300] ta có C(0) = 4000; C(175) = 2775; C(300) = 3400
Từ đó ta thấy C(x) đạt giá trị nhỏ nhất khi x = 175.
Chọn đáp án B.
Câu 6:
19/07/2024GTLN của hàm số đạt được khi x bằng:
y' = -2x + 4 = 0 <=> x = 2
Dựa vào bảng biến thiên; GTLN của hàm số là 11 khi x= 2.
Chọn đáp án D.
Chú ý. Cần phân biệt GTLN của hàm số (max y) với giá trị x để hàm số đạt được GTLN.
Câu 7:
13/07/2024GTLN của hàm số trên khoảng (0; 4) đạt được
Xét
Ta có y' = 0 => x = 1
Vậy hàm số có GTLN bằng √2 khi x = 1 . Chọn đáp án A.
Câu 8:
20/07/2024Tìm GTLN của hàm số ?
Tập xác định R.
Ta có bảng biến thiên:
Hàm số không có GTLN trên R . Chọn đáp án C.
Câu 9:
19/07/2024Một hành lang giữa hai tòa tháp có hình dạng một hình lăng trụ đứng. Hai mặt bên ABB’A’ và ACC’A’ là hai tấm kính hình chữ nhật dài 20m, rộng 5m. Với độ dài xấp xỉ nào của BC thì thể tích hành lang này lớn nhất
Thể tích hình lăng lớn nhất khi và chỉ khi diện tích ΔABC lớn nhất.
Gọi độ dài BC là x (m). Kẻ AH ⊥ BC.
Bài toán đưa về tìm x ∈ (0; 10) để hàm số y = x√(100-x2) có giá trị lớn nhất.
Ta có:
Bảng biến thiên:
Hàm số đạt giá trị lớn nhất tại .
Chọn đáp án B.
Câu 10:
15/07/2024Tìm GTNN của hàm số ?
Lập bảng biến thiên ta được, hàm số đạt giá trị nhỏ nhất tại:
Chọn B
Câu 12:
19/07/2024GTNN của hàm số trên đoạn [-4;4] là
Chọn A
Xét hàm số trên đoạn [-4;4].
Ta có:
y(1) = -4, y(-3) = 28; y(4) = 77; y(-4) = 21
GTNN của hàm số trên đoạn [-4;4] là -4 khi x= 1
Câu 13:
16/07/2024GTLN của hàm số trên đoạn [-1;3] là
Chọn C
Xét hàm số trên đoạn [-1;3]
y(0) = 16, y(2) = 0; y(-1) = 9; y(3) = 25
GTLN của hàm số trên đoạn [-1;3] là 25 khi x = 3.
Câu 14:
17/07/2024GTNN của hàm số trên nửa khoảng (-2;4] là
Chọn D
Xét hàm số
Ta có bảng biến thiên
Hàm số không có GTNN
Câu 15:
15/07/2024GTNN của hàm số trên khoảng (1; +∞) là:
Chọn B
Xét hàm số
Trên (1; +∞) y' = 0 => x = 2. Bảng biến thiên
Giá trị nhỏ nhất của hàm số là y=5.
Câu 16:
20/07/2024GTLN của hàm số y = 2sinx + cos2x trên đoạn [0; π] là
Xét hàm số y=2sin x + cos 2x trên đoạn
y’=2cos x- 2sin 2x = 2cos x(1- 2sin x)
Trên đoạn [0; π]
Giá trị lớn nhất của hàm số này trên [0; π] là y = .
Chọn B
Câu 17:
21/07/2024Cho hàm số y = f(x) xác định và liên tục trên R và có bảng biến thiên. Khẳng định nào sau đây là khẳng định đúng?
Chọn D
Dựa vào định nghĩa, hàm số không tồn tại giá trị lớn nhất và giá trị nhỏ nhất. Hàm số đạt cực đại tại x=0 và cực tiểu tại x=1.
Câu 18:
20/07/2024Xét hàm số
Trong các khẳng định sau, khẳng định nào là đúng?
Bảng biến thiên
Hàm số không tồn tại giá trị lớn nhất. Hàm số có giá trị cực đại bằng 0.
Chọn D
Câu 19:
12/10/2024Cho tấm nhôm hình vuông cạnh 12cm. Người ta cắt ở bốn góc của tấm nhôm đó bốn hình vuông bằng nhau, mỗi hình vuông có cạnh bằng x (cm), rồi gập tấm nhôm lại như hình vẽ bên để được một cái hộp không nắp. Với giá trị nào của x thì hộp nhận được có thể tích lớn nhất?
Đáp án đúng: D
*Phương pháp giải:
- Hộp có đáy là hình vuông: 12-2x, chiều cao = cạnh hình vuông ở 4 góc bị cắt
- tính ra thể thích của hình hộp. cho hàm số y=0 giải ra sẽ tìm ra được khoảng x để xét bảng biến thiên với đạo hàm của hàm số y trên khoảng giá trị đó
*Lời giải:
Hình hộp có đáy là hình vuông cạnh: 12 - 2x
Chiều cao của hình hộp là: x
Thể tích hình hộp là
Bài toán đưa về tìm x ∈ (0; 6) để hàm số có giá trị lớn nhất.
=
y' xác định ∀ x ∈ (0; 6)
Bảng biến thiên
Hàm số đạt giá trị lớn nhất tại x=2
*Cách tìm m để hàm số đạt min/max
Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số sử dụng bảng biến thiên
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm các nghiệm của f'(x) và các điểm f'(x)trên K.
Bước 3. Lập bảng biến thiên của f(x) trên K.
Bước 4. Căn cứ vào bảng biến thiên kết luận
3. Quy trình tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số không sử dụng bảng biến thiên
Trường hợp 1. Tập K là đoạn [a; b]
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈[a; b] của phương trình f'(x) = 0 và tất cả các điểm αi ∈ [a; b] làm cho f'(x) không xác định.
Bước 3.Tính f(a), f(b), f(xi), f(αi).
Bước 4. So sánh các giá trị tính được và kết luận
Trường hợp 2. Tập K là khoảng (a; b)
Bước 1. Tính đạo hàm f'(x).
Bước 2. Tìm tất cả các nghiệm xi ∈ (a; b) của phương trình f'(x) = 0 và tất cả các điểm αi ∈ (a; b) làm cho f'(x) không xác định.
Bước 3. Tính
Bước 4. So sánh các giá trị tính được và kết luận
Xem thêm các bài viết liên quan hay, chi tiết:
Bài tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số Toán 12
Câu 20:
18/07/2024Khu chung cư Royal City có 250 căn hộ cho thuê. Nếu người ta cho thuê x căn hộ thì lợi nhuận hàng tháng, tính theo triệu đồng, được cho bởi: Hỏi lợi nhuận tối đa họ có thể đạt được là bao nhiêu?
Ta có x ∈ (0; 250) ,P’(x) = -16x+3200.
Khi đó P’(x)=0 ⇔ -16x + 3200 = 0 ⇔ x = 200 (tm).
P(0)= - 8000; P(250) = 292 000; P(200) = 240 000
Do đó lợi nhuận tối đa họ thu được là P(250) = 292 000
Chọn C
Câu 21:
13/07/2024Một nhà máy sản xuất được 60000 sản phẩm trong một ngày và tổng chi phí sản xuất x sản phẩm được cho bởi:
Hỏi nhà máy nên sản xuất bao nhiêu sản phẩm mỗi ngày để chi phí sản xuất là nhỏ nhất?
Ta có x ∈ (0; 60000)
Do đó, hàm số đạt cực tiểu tại x = 50000.
Nên x=50000 là số sản phẩm cần sản xuất mỗi ngày để tối thiểu chi phí.
Chọn C
Có thể bạn quan tâm
- Trắc nghiệm Giá trị lớn nhất. Giá trị nhỏ nhất của hàm số (có đáp án) (575 lượt thi)
- 21 câu trắc nghiệm: Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án (262 lượt thi)
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án (P1) (Nhận biết) (292 lượt thi)
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án (P1) (Thông hiểu) (314 lượt thi)
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án (P1) (Vận dụng) (269 lượt thi)
- Trắc nghiệm Giá trị lớn nhất và giá trị nhỏ nhất của hàm số có đáp án (304 lượt thi)
Các bài thi hot trong chương
- Trắc nghiệm Sự đồng biến, nghịch biến của hàm số (có đáp án) (831 lượt thi)
- Trắc nghiệm Cực trị hàm số (có đáp án) (805 lượt thi)
- Bài tập về Tính đơn điệu của hàm số có lời giải (713 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị hàm số (có đáp án) (456 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị của hàm số có đáp án (Phần 1) (437 lượt thi)
- Trắc nghiệm Đường tiệm cận (có đáp án) (408 lượt thi)
- Trắc nghiệm Cực trị của hàm số có đáp án (P1) (Nhận biết) (390 lượt thi)
- Trắc nghiệm Khảo sát sự biến thiên và vẽ đồ thị của hàm số (có đáp án) (374 lượt thi)
- Trắc nghiệm Đường tiệm cận có đáp án (367 lượt thi)
- 250 câu trắc nghiệm Ứng dụng đạo hàm để khảo sát hàm số cơ bản (P1) (361 lượt thi)